FAM151A, a Menorin Orthlog, is a Kidney Tubule Transmembrane Phosphodiesterase

Thomas Atkins

atkin 423 @umn.edu

Summary

FAM151A is a gene that encodes a transmembrane protein that contains two domains of unknown function DUF2181. FAM151A has direct orthologs in organisms including mammals, reptiles and amphibians, bony fish, and other Eumetazoan invertebrates, but has no orthologs in birds. The FAM151 family also includes FAM151B, which has one DUF2181 domain and no transmembrane region. The FAM151 family has orthologs in nematodes and arthropods from before a gene duplication event, one of which is menorin, a *C. elegans* protein involved in dendrite morphogenesis. Sequence conservation analysis of hypothesized active sites suggests that only the first DUF2181 domain of FAM151A has biochemical function. FAM151A also contains a SNP, rs11206394, where individuals homozygous for the minor allele were found to have a 40% reduction in the odds of developing colorectal cancer, purportedly through the SNP's effect on a miRNA binding site.

The mRNA transcript of FAM151A is expressed highly in kidney, small intestine, and liver tissues, while immunohistochemical staining data indicate the FAM151A protein is only highly expressed in proximal kidney tubules. The mRNA expression pattern is speculated to be a result of HNF1, a transcription factor expressed in a similar pattern to FAM151A predicted to bind to the FAM151A promoter. Protein expression is hypothesized to be a result of competition between two proteins that bind to an unpaired conserved section of the 3' UTR of FAM151A, ZFP36 and EIF4B, which act as a degradation signal and translation initiation signal, respectively. FAM151A is underexpressed in carcinomic kidney tissue and hepatitic liver tissue, but not differentially expressed under diabetic conditions.

FAM151A is strongly predicted to be localized to the cell membrane, with the two DUF2181s residing outside of the cell. The tertiary structure of the protein is predicted with high confidence by AlphaFold2, and agrees with experimental structure of homologous domains. DUF2181 is part of the GDPD/PLCD superfamily, a class of enzymes that hydrolyze phosphodiester bonds. Other proteins, such as GDPD5 and ENPP6, are known as transmembrane phosphodiesterases acting in the kidney and brain (in which FAM151A is expressed), and bind to a glycerophosphocholine substrate, which we suggest as a potential substrate of FAM151A. In *C. elegans*, sax-7 is a known binding partner of menorin, so its human ortholog L1CAM is a potential interaction partner with proteins in the FAM151 family.

Contents

Almotated Conceptual Hanslation	1
DNA	4
Gene Structure	4
Overview of Orthologs and Paralogs	4
FAM151 Family	4
Menorin	5
DUF2181 Domain	6
Sequence Conservation of FAM151A Orthologs	6
Evolutionary History of FAM151A	7
FAM151A Mutations	11
Mutation Summary	11
Clinically Relevant SNP rs11206394	11
RNA	13
Expression Patterns of FAM151A	13
Differential Expression Conditions of FAM151A	14
FAM151A Promoter and 5' UTR Analysis	17
FAM151A Predicted Promoter TFs	17
FAM151A 3' UTR Analysis	18
Drotoin	01
riotem	21
Properties and Post-Translational Modifications of FAM151A	21 21
Properties and Post-Translational Modifications of FAM151A	21 21 21
Properties and Post-Translational Modifications of FAM151A	21 21 21 21
Properties and Post-Translational Modifications of FAM151A	21 21 21 21 21 22
Properties and Post-Translational Modifications of FAM151A	21 21 21 21 21 22 23
Properties and Post-Translational Modifications of FAM151A	21 21 21 21 21 22 23 27
Properties and Post-Translational Modifications of FAM151A	21 21 21 21 21 22 23 27 27
Properties and Post-Translational Modifications of FAM151A	21 21 21 21 22 23 27 27 28
Properties and Post-Translational Modifications of FAM151A	21 21 21 21 22 23 27 27 28 29
Properties and Post-Translational Modifications of FAM151A	21 21 21 21 22 23 27 27 28 29 29
Properties and Post-Translational Modifications of FAM151A	21 21 21 21 22 23 27 27 28 29 29 29
Properties and Post-Translational Modifications of FAM151A	21 21 21 21 22 23 27 27 28 29 29 29 29 30
Properties and Post-Translational Modifications of FAM151A Molecular Weight of Protein FAM151A N-Linked Glycosylation Sites of FAM151A FAM151A Resides in the Cell Membrane Structure of FAM151A Function of Enzymatically Active DUF2181 Active Site Residues Example Functions of GDPD/PLCD Superfamily Phosphodiesterases FAM151A Interacting Proteins Binding Partners in Orthologs Predicted by Existing Databases Similarly Expressed Phosphodiesterases	21 21 21 21 22 23 27 27 28 29 29 29 29 30
Properties and Post-Translational Modifications of FAM151A Molecular Weight of Protein FAM151A N-Linked Glycosylation Sites of FAM151A FAM151A Resides in the Cell Membrane Structure of FAM151A Function of Enzymatically Active DUF2181 Active Site Residues Example Functions of GDPD/PLCD Superfamily Phosphodiesterases FAM151A Interacting Proteins Binding Partners in Orthologs Predicted by Existing Databases Similarly Expressed Phosphodiesterases	21 21 21 21 22 23 27 27 28 29 29 29 29 30 31
Properties and Post-Translational Modifications of FAM151A Molecular Weight of Protein FAM151A N-Linked Glycosylation Sites of FAM151A FAM151A Resides in the Cell Membrane Structure of FAM151A Function of Enzymatically Active DUF2181 Active Site Residues Example Functions of GDPD/PLCD Superfamily Phosphodiesterases FAM151A Interacting Proteins Binding Partners in Orthologs Predicted by Existing Databases Similarly Expressed Phosphodiesterases	21 21 21 21 22 23 27 27 28 29 29 29 30 31 31
Properties and Post-Translational Modifications of FAM151A Molecular Weight of Protein FAM151A N-Linked Glycosylation Sites of FAM151A FAM151A Resides in the Cell Membrane Function of FAM151A Function of Enzymatically Active DUF2181 Active Site Residues Example Functions of GDPD/PLCD Superfamily Phosphodiesterases FAM151A Interacting Proteins Binding Partners in Orthologs Predicted by Existing Databases Similarly Expressed Phosphodiesterases Similarly Expressed Phosphodiesterases FAM151A Substrate Determination FAM151A/B Interacting Protein Experiments FAM151A/B Interacting Protein Experiments	21 21 21 21 22 23 27 27 28 29 29 29 29 30 31 31 31 31
Properties and Post-Translational Modifications of FAM151A Molecular Weight of Protein FAM151A N-Linked Glycosylation Sites of FAM151A FAM151A Resides in the Cell Membrane Structure of FAM151A Function of Enzymatically Active DUF2181 Active Site Residues Example Functions of GDPD/PLCD Superfamily Phosphodiesterases FAM151A Interacting Proteins Binding Partners in Orthologs Predicted by Existing Databases Similarly Expressed Phosphodiesterases Similarly Expressed Phosphodiesterases FAM151A Substrate Determination FAM151A miRNA Binding Site Evaluation	21 21 21 22 23 27 27 28 29 29 29 30 31 31 31 31

Appendix B: Multiple Sequence Alignments of FAM151A Orthologs	34
Global Alignments of FAM151A Orthologs	34
Strict Orthologs	34
Distant Orthologs	37
Alignment of FAM151A and FAM151B Orthologs	39
Appendix C: Alignments of DUF2181 Domains	42
Alignment of DUF2181 Domain in All Orthologs	42
Alignment of DUF2181 with Other Members of GDPD/PLCD Superfamily	46
Appendix D: FAM151A Promoter Analysis	47
FAM151A Promoter Diagram with Highlighted Predicted TF Binding Sites	47
FAM151A Promoter Multiple Sequence Alignment	48
Appendix E: FAM151A 3' UTR Multiple Sequence Alignment	51

Annotated Conceptual Translation

agagcagaccaggcccggtggagaattaggtgctgctggggggctcctgcctcccacagga ttccagctgcagggagcctcagggactctgggccgcacggagttgggggcattccccaga	60 120
gagcgtcgccatggtctgcagggagcagttatcaaagaatcaggtcaagtgggtgtttgc	180
M V C R E Q L S K N Q V K W V F A	17 N-term; TMEM region
cggcattacctgtgtgtctgtggtggtcattgccgcaatagtccttgccatcaccctgcg	240
GITCVSVVVIAAIVLAI TLR	37
gcggccaggctgtgagctggaggcctgcagccctgatgccgacatgctggactacctgct	300 ex1 ex2; rs17399297G>A
R P G C E L E A C S P D A D M L D Y L L	57
gagcctgggccagatcagccggcgagatgccttggaggtcacctggtaccacgcagccaa	360 rs147294199G>A
S L G Q I S R R D A L E V T W Y H A A N	77 DUF2181; active site
cagcaagaaagccatgacagctgccctgaacagcaacatcacagtcctggaggctgacgt	420 ex2 ex3; rs142814457C>G
S K K A M T A A L N S N I T V L E A D V	97 active sites
caatgtagaagggctcggcacagccaatgagacaggagttcccatcatggcacacccccc	480
N V E G L G T A N E T G V P I M A H P P	117 active site pre. N-linked glv.
cactatctacagtgacaacacactggagcagtggctggacgctgtgctgggctcttccca	540
T I Y S D N T L E Q W L D A V L G S S Q	137
aaagggcatcaaactggacttcaagaacatcaaggcagtgggcccctccct	600 ex3 ex4
K G I K L D F K N I K A V G P S L D L L	157 active site
gcggcagctgacagaggaaggcaaagtccggcggcccatatggatcaacgctgacatctt	660
R Q L T E E G K V R R P I W I N A D I L	177
aaagggccccaacatgctcatctcaactgaggtcaatgccacacagttcctggccctggt	720 ex4 ex5
K GP NMLISTEVNATQFLALV	197 pre. N-linked gly.
ccaggagaagtatcccaaggctaccctatctccaggctggaccaccttctacatgtccac	780 rs147577669A>C
Q E K Y P K A T L S P G W T T F Y M S T	217
gtccccaaacaggacgtacacccaagccatggtggagaagatgcacgagctggtgggagg	840
S P N R T Y T Q A M V E K M H E L V G G	237 pre. N-linked gly.
agtgccccagagggtcaccttccctgtacggtcttccatggtgcgggctgcctgc	900
V P Q R V T F P V R S S M V R A A W P H	257
cttcagctggctgctgagccaatctgagaggtacagcctgacgctgtggcaggctgcctc	960 ex5 ex6
F S W L L S Q S E R Y S L T L W Q A A S	277 active site

ggaccccatgtcggtggaagatctgctctacgtccgggataacactgctgtccaccaagt 1020 D P M S V E D L L Y V **R** D N T A V H Q V 297 ctactatgacatctttgagcctctcctgtcacagttcaagcagctggccttgaatgccac 1080 ex6|ex7 Y Y D I F E P L L S Q F K Q L A L N A T 317 active site pre. N-linked gly. acggaaaccaatgtactacacgggaggcagcctgatccctcttctccagctgcctgggga 1140 R K P M Y Y T G G S L I P L L Q L P G D 337 tgacggtctgaatgtggagtggctggttcctgacgtccagggcagcggtaaaacagcaac 1200 D G L N V E W L V P D V Q G S G K T A T 357 DUF2181 aatgaccctcccagacacagaaggcatgatcctgctgaacactggcctcgagggaactgt 1260 ex7|ex8 MTLPDTEGMILLNTGLEGTV 377 ggctgaaaaccccgtgcccattgttcatactccaagtggcaacatcctgacgctggagtc 1320 A E N P V P I V H T P S G N I L T L E S 397 ctgcctgcagcagctggccacacatcccggacactggggcatccatttgcaaatagcgga 1380 rs1368883C>T CLQQLATHPGHWGIHLQIAE 417 gcccgcagccctccggccatccctggccttgctggcacgcctctccagccttggcctctt 1440 PAALRPSLALLARLSSLGLL 437 gcattggcctgtgtgggttggggccaaaatctcccacgggagtttttcggtccccggcca 1500 HWPVWVGAKISHGSFSVPGH457 tgtggctggcagagagctgcttacagctgtggctgaggtcttcccccacgtgactgtggc 1560 VAGRELLTAVAEVFPHVTVA 477 accaggctggcctgaggaggtgctgggcagtggctacagggaacagctgctcacagatat 1620 PGWPEEVLGSGYREQLLTDM 497 gctagagttgtgccaggggctctggcaacctgtgtccttccagatgcaggccatgctgct 1680 LELCQGLWQPVSFQMQAMLL 517 gggccacagcacagctggagccataggcaggctgctggcatcctccccccggggccaccgt 1740 rs11206394G>C G H S T A G A I G R L L A S S P R A T V 537 rs41297135C>G cacagtggagcacaacccagctgggggcgactatgcctctgtgaggacagcattgctggc 1800 rs2289015G>A TVEHNPAGGDYASVRTALLA557 agctagggctgtggacaggacccgagtctactacaggctaccccagggctaccacaagga 1860 A R A V D R T R V Y Y R L P Q G Y H K D 5777

cttgctggctcatgttggtagaaactgagcacccaggggtggtgggccagcggacctcag 1920 L L A H V G R N * 586 Stop codon ggcggaggcttcccacggggaggcaggaagaaataaaggtctttggctttctcca[aaa] 1975 Poly-A signal Poly-A tail Key: Bold: Conserved in all 20 orthologs Pink: Active site as determined by Findlay et. al. Brown: Predicted N-linked glycosylation site Orange: SNPs

Salmon: SNPs with associated publications

Blue: exon-exon boundaries

DNA

Gene Structure

Figure 1: Schematic diagram of protein FAM151A domains and important amino acids.

Homo sapiens FAM151A (NCBI Accession: NM_176782.3/NP_788954.2) is a ~ 14 kbp gene located in cytogenetic band 1p32.3 that encodes a 1975 bp mRNA transcript that translates to a 585 amino acid protein.^{1,2} The protein contains a 20 aa long helical transmembrane region, and two domains of unknown function DUF2181, as seen in Figure 1.³ The gene has 8 exons, the last and longest of which composes roughly half the mRNA transcript.⁴ No alternative splicings are known.⁵

Overview of Orthologs and Paralogs

FAM151 Family

Figure 2 shows 20 direct orthologs of the FAM151A protein in organisms including mammals (72%-98% identity), reptiles and amphibians (43%-50% identity), bony fish (41%-46% identity), non-vertebrate chordates (28%-30% identity), and non-chordates in Eumetazoa (21%-28% identity). The data were collected using NCBI's BLAST, TimeTree, and EM-BOSS NEEDLE.^{6,7,8} BLASTing and BLATing multiple FAM151A orthologs against all birds returned no results, suggesting that FAM151A is no longer present in Aves.⁹

 $^{^1{\}rm NCBI}$ Protein (National Center for Biotechnology Information Protein Database) entry on FAM151A. https://www.ncbi.nlm.nih.gov/protein/NP_788954.2.

²Genecards entry on FAM151A. https://www.genecards.org/cgi-bin/carddisp.pl?gene=FAM151A.

³UniProt (Universal Protein Resource) entry on FAM151A. https://www.uniprot.org/uniprot/Q8WW52.

 $^{^{4}\}rm NCBI$ Protein (National Center for Biotechnology Information Nucleotide Database) entry on FAM151A. https://www.ncbi.nlm.nih.gov/nuccore/NM_176782.3.

⁶NCBI Basic Local Alignment Search Tool. https://blast.ncbi.nlm.nih.gov/Blast.cgi.

⁷TimeTree: The Timescale of Life. http://www.timetree.org/.

⁸EMBOSS NEEDLE. https://www.ebi.ac.uk/Tools/psa/emboss_needle/.

⁹Blast-like Alignment Tool. https://genome.ucsc.edu/cgi-bin/hgBlat.

	Genus/species	Common name	Taxonomic Group	Med. Date of Divergence (mya)	Accession Number	Sequence Length	Sequence Identity	Sequence Similarity
Primata	Homo sapiens	Human	Hominidae	0	NP_788954.2	585	100.0%	100.0%
	Pan troglodytes	Chimpanzee	Hominidae	6	XP_016774503.1	585	98.1%	98.8%
	Papio anubis	Olive baboon	Cercopithecidae	29	XP_003891985.2	585	95.2%	96.9%
Mammalia	Mus musculus	Mouse	Rodentia	89	NP_666261.1	608	68.6%	79.1%
	Equus caballus	Horse	Perissodactyla	94	XP_001488568.4	588	75.3%	84.7%
	Vicugna pacos	Alpaca	Artiodactyla	94	XP_006200587.1	589	72.8%	83.5%
Reptilia	Chrysemys picta bellii	Painted turtle	Testudines	318	XP_005284924.2	590	49.5%	65.1%
	Alligator sinensis	Chinese alligator	Crocodilia	318	XP_006025880.1	585	47.5%	64.2%
Amphibia	Rhinatrema bivittatum	Two-lined caecilian	Gymnophiona	352	XP_029474719.1	592	46.4%	62.0%
	Xenopus laevis	African clawed frog	Anura	352	XP_018116415.1	578	46.1%	64.0%
	Bufo bufo	Common toad	Anura	352	XP_040262912.1	576	42.9%	60.9%
Vertabrata	Cyprinus carpio	Common carp	Actinopterygii	433	XP_042575185.1	614	41.5%	58.4%
	Danio rerio	Zebrafish	Actinopterygii	433	NP_001093565.1	599	41.4%	57.2%
	Rhincodon typus	Whale shark	Chondrichthyes	465	XP_020366386.1	600	46.8%	62.1%
Chordata	Styela clava	Stalked sea squirt	Tunicata	603	XP_039273176.1	597	30.2%	49.0%
	Ciona intestinalis	Sea squirt	Tunicata	603	XP_002121148.3	639	27.9%	45.5%
	Branchiostoma floridae	Florida lancelet	Cephalochordata	637	XP_035660277.1	646	28.2%	41.9%
Eumetazoa	Lytechinus variegatus	Green sea urchin	Bilateria	627	XP_041464769.1	544	22.6%	39.5%
	Stylophora pistillata	Hood coral	Cnidaria	687	PFX14114.1	557	20.7%	34.2%
	Lingula anatina	Brachiopod	Bilateria	736	XP_013411281.1	598	27.6%	47.1%

Figure 2: 20 FAM151A orthologs and related properties.

In humans, FAM151A has a processed pseudogene on Chromosome 3, ENSG00000234805.¹⁰

The FAM151 family also includes FAM151B, which has one DUF2181 and no transmembrane region, suggesting a different function from FAM151A.¹¹ In humans, FAM151B has 21%/29% sequence identity/similarity to FAM151A.¹² FAM151B has direct orthologs in all organisms for which FAM151A has orthologs. Additionally, FAM151B has direct orthologs in Aves, in contrast to FAM151A.

Menorin

Genes in the FAM151 family are homologs of the well-characterized C. elegans menorin (MNR-1), a dendritic branching protein involved in the creation of higher-order branches by forming a complex with sax-7.^{13,14} In addition to the FAM151 family, MNR-1 has orthologs in Nematoda and Arthropoda that can be found using BLAST.

 $^{^{10}}$ GeneCards entry on ENSG00000234805. https://www.genecards.org/cgi-bin/carddisp.pl?gene=ENSG00000234805.

¹¹NCBI Protein (National Center for Biotechnology Information Protein Database) entry on FAM151B. https://www.ncbi.nlm.nih.gov/protein/NP_788954.2.

¹²EMBOSS Needle. https://www.ebi.ac.uk/Tools/psa/emboss_needle/.

¹³Findlay, A. S., McKie, L., Keighren, M., Clementson-Mobbs, S., Sanchez-Pulido, L., Wells, S., Cross, S. H., & Jackson, I. J. (2020a). Fam151b, the mouse homologue of C.elegans menorin gene, is essential for retinal function. *Scientific Reports*, 10(1). https://doi.org/10.1038/s41598-019-57398-4.

¹⁴Salzberg, Y., Diaz-Balzac, C. A., Ramirez-Suarez, N. J., Attreed, M., Tecle, E., Desbois, M., Kaprielian, Z., & Bulow, H. E. (2013). Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans. *Cell*, 155(2), 308–320. https://doi.org/10.1016/j.cell.2013.08.058.

Figure 3: Shannon information content (in bits) of each amino acid in protein FAM151A aligned over 20 members of Eumetazoa (rolling average of 5 amino acids).

DUF2181 Domain

The defining characteristic of the FAM151/Menorin family of genes is the DUF2181, revealed to be part of the GDPD/PLCD (glycerophosphoryldiester phosphodiesterase/PLC-like phosphodiesterases) superfamily through homology detection, discussed in further detail in the section on the FAM151A protein.¹⁵

Sequence Conservation of FAM151A Orthologs

Figure 3 displays a plot of amino acid conservation across the 20 strict FAM151A orthologs in Figure 2 as measured by the Shannon information metric

$$I_b = \lg(20) - \sum_i p_{i,b} \lg p_{i,b}$$

where $p_{i,b}$ is the frequency of base *i* at position *b*.¹⁶ In this plot, we see that the first DUF2181 is far more conserved than the second, supporting researchers' speculation that the second DUF2181 is nonfunctional.¹⁷ Furthermore, the transmembrane region is the least conserved domain of the protein by this metric. However, our metric does not account for amino acid chemistry, suggesting that the region could still function as a transmembrane domain.

¹⁵PFAM Entry on GDPD. http://pfam.xfam.org/family/gdpd.

¹⁶Shannon, C. E. (1948). A mathematical theory of communication. *The Bell System Technical Journal*, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

¹⁷Findlay, A. S., McKie, L., Keighren, M., Clementson-Mobbs, S., Sanchez-Pulido, L., Wells, S., Cross, S. H., & Jackson, I. J. (2020b). Fam151b, the mouse homologue of c.elegans menorin gene, is essential for retinal function. *Scientific Reports*, 10(1). https://doi.org/10.1038/s41598-019-57398-4.

Figure 4: Unrooted phylogenetic tree displaying FAM151A ancestry.

Three multiple sequence alignments are presented in Appendix B. The first is an alignment of human protein FAM151A with the corresponding FAM151A proteins of all vertebrates listed in Figure 2 (close orthologs), the second is an alignment of human protein FAM151A with the corresponding FAM151A proteins of all invertebrates listed in Figure 2 (distant orthologs). The third is an alignment of proteins FAM151A and FAM151B in humans, mice, toads, and zebrafish, with distinguishing amino acids highlighted in red, where we see that FAM151B's DUF2181 corresponds with the first DUF2181 of FAM151A. All were created using Clustal Omega.¹⁸ Long stretches of amino acid residues with no equivalent were found in all three non-chordates, and omitted for brevity.

Evolutionary History of FAM151A

Figures 4 displays an unrooted phylogenetic tree created from a global multiple sequence alignment of FAM151A orthologs, each containing two full DUF2181s. In general, organisms were labelled a combination of the first letter of the genus and the first two letters of the species name, a full table of organisms and labels can be found in Appendix A.

Figure 5 presents a wider evolutionary tree of FAM151A homologs (presented in a rectangular form for ease of clade distinction in Figure 6). The tree is generated from an alignment of only DUF2181s (the first if an ortholog has two), shown in full in Appendix C (the amino acid coloring scheme is described later). Labels follow the format Species_type where the

¹⁸Clustal Omega. https://www.ebi.ac.uk/Tools/msa/clustalo/.

Figure 5: Unrooted phylogenetic tree displaying DUF2181 ancestry.

Figure 6: Unrooted phylogenetic tree displaying DUF2181 ancestry. The tree is presented in a rectangular format for ease of viewing.

Figure 7: Graph showing mutation rate of FAM151A in comparison to mutation rates of cytochrome c and fibrinogen alpha chain.

species label can be found in Appendix A and type is an abbreviation of the name given to the protein containing that DUF2181 by NCBI Protein.

From this alignment, we see that vertebrate FAM151A and FAM151B orthologs cluster nicely, suggesting that the gene duplication event occurred before the emergence of vertebrates. Furthermore, we see that in non-chordates who do not belong to Nematoda or Arthoropoda, there appear to be two major groups, with organisms generally having two copies of the protein, one in each cluster. The exception is *Stylophora pistillata*, whose closely related FAM151A and FAM151B proteins provide evidence of a gene conversion event. We also see clustering of the DUF2181s of nematodes and arthropods, so we present the likely history of the gene as follows (using TimeTree for dating).¹⁹ A gene belonging to the FAM151 family first appeared between 700 and 800 million years ago, at the latest, when arthropods and nematodes diverged from other members of Eumetazoa. Soon after this divergence, FAM151 underwent a gene duplication event, splitting into FAM151A and FAM151B before 700 mya.

Figure 7 contrasts the evolution rate of FAM151A with those of fibrinogen alpha chain and cytochrome c. FAM151A is neither evolving as quickly as fibrinogen alpha chain nor as slowly as cytochrome c, suggesting that FAM151A is likely not under evolutionary pressure to evolve quickly, nor part of a large complex that discourages mutations. From the chart, we hypothesize that FAM151B, with an *m*-value of 1.54, diverged from FAM151A around 900 million years ago, in the same timescale as our previous conclusion.

¹⁹TimeTree: The Timescale of Life. http://www.timetree.org/.

miRNA	Reference Energy (kCal/mol)	Variant Energy (kCal/mol)
hsa-miR-4706	-31.21	Not predicted
hsa-miR-4525	-25.72	-29.05
hsa-miR-4739	Not predicted	-27.86
hsa-miR-214-5p	-26.76	Not predicted

Table 1: miRNAs predicted to differentially bind to region containing rs11206394.

FAM151A Mutations

Mutation Summary

A search of dbSNP revealed 8 SNPs that encode nonsynomomous mutations, and were either reported in ClinVar or had a minor allele frequency greater than 5%.²⁰ These are labelled in the annotated conceptual translation. In mice, while knocking out FAM151B was associated with loss of retinal function, but there was no discernable retinal phenotype associated with a full knockout of FAM151A.²¹

Clinically Relevant SNP rs11206394

SNP rs11206394 is a missense mutation found in the FAM151 gene, where a guanine is changed into a cytosine, changing a glycine into an alanine. The minor allele ocurred with 13.7% frequency in 5008 genomes sequenced from individuals during the 1000 Genomes Project.²² In a study examining the impact of mutations to miRNA binding sites in 3' UTRs, individuals homozygous for the minor allele were found to have a 40% reduction of odds of developing colorectal cancer (p = 0.011).²³

As we hypothesize that the second DUF2181 that contains the SNP is nonfunctional, we assess the impact of the mutation on miRNA binding sites. Neither TargetScan nor miRDB found any miRNA binding sites for the FAM151A mRNA transcript.^{24,25} Thus, to examine potential miRNA binding sites that could be impacted by the variant, miRanda was used to predict potential binding sites from all *Homo sapiens* miRNAs in the miRBase database in a region 28bp upstream and downstream of rs11206394 for both the reference and variant alleles.^{26,27} The results are summarized in Table 1. Because the SNP is located in the 3' UTR

 $^{^{20}{\}rm dbSNP}$ (Single Nucleotide Polymorphism Database) search for FAM151A. https://www.ncbi.nlm.nih. gov/snp/?term=FAM151A.

²¹Findlay, A. S., McKie, L., Keighren, M., Clementson-Mobbs, S., Sanchez-Pulido, L., Wells, S., Cross, S. H., & Jackson, I. J. (2020a). Fam151b, the mouse homologue of C.elegans menorin gene, is essential for retinal function. *Scientific Reports*, 10(1). https://doi.org/10.1038/s41598-019-57398-4.

²²dbSNP (Single Nucleotide Polymorphism Database) entry on rs11206394. https://www.ncbi.nlm.nih. gov/snp/rs11206394.

²³Kang, B. W., Jeon, H.-S., Chae, Y. S., Lee, S. J., Park, J. S., Choi, G. S., & Kim, J. G. (2016). Impact of genetic variation in microrna-binding site on susceptibility to colorectal cancer. *Anticancer Research*, *36*(7), 3353–3361. https://ar.iiarjournals.org/content/36/7/3353.

²⁴TargetScanHuman. http://www.targetscan.org/vert_80/.

²⁵miRDB: MicroRNA Target Prediction Database. http://www.mirdb.org/.

²⁶Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., & Marks, D. S. (2003). MicroRNA targets in Drosophila. *Genome Biology*, 5(1), R1. https://doi.org/10.1186/gb-2003-5-1-r1.

²⁷Kozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2018). miRBase: from microRNA sequences to

		rs228	9015
		\mathbf{C}	Т
$m_{2}11906204$	С	4322	1
rs11200594	G	284	401

Table 2: Table of allele frequency of in rs11206394 and rs2289015 in 5008 genomes sequenced by the Human Genome Project.

of gene ACOT11, which overlaps the last exon of FAM151A, one potential hypothesis is the the SNP affects ACOT11 expression (ACOT11 is known to be expressed in the colon).²⁸

However, the discrepancy in cancer rates could also be explained by other SNPs associated with rs11206394 via linkage disequilibrium. rs11206394 has a linkage disequilibrium coefficient of 0.9971 (p < 0.0001) with SNP rs2289015, located 60bp downstream, also in the 3' UTR of FAM151A, as measured by LDlink using data from the 1000 Genomes project.²⁹ The data are shown in Table 2. This suggests either SNP could be impacting colorectal cancer rates. Yet GDPD5, discussed later as being similar to FAM151A, is also known to have a 3' UTR miRNA binding site (miR-195-5p) that increases chemosensitivity and cell apoptosis in CRC cells.³⁰

function. Nucleic Acids Research, 47(D1), D155–D162. https://doi.org/10.1093/nar/gky1141.

²⁸The Human Protein Atlas entry on ACOT11. https://www.proteinatlas.org/ENSG00000162390-ACOT11/tissue.

²⁹Machiela, M. J., & Chanock, S. J. (2015). LDlink: a web-based application for exploring populationspecific haplotype structure and linking correlated alleles of possible functional variants. *Bioinformatics*, *31*(21), 3555–3557. https://doi.org/10.1093/bioinformatics/btv402.

³⁰Feng, C., Zhang, L., Sun, Y., Li, X., Zhan, L., Lou, Y., Wang, Y., Liu, L., & Zhang, Y. (2018). GDPD5, a target of miR-195-5p, is associated with metastasis and chemoresistance in colorectal cancer. *Biomedicine & Pharmacotherapy*, 101, 945–952. https://doi.org/10.1016/j.biopha.2018.03.028.

RNA

Expression Patterns of FAM151A

Figure 8: FAM151A Expression Patterns from NCBI Gene.

Figure 9: Expression patterns of FAM151A from NCBI GEO.

Figure 8 shows expression patterns of FAM151A in four different experiments from NCBI Gene, and Figure 9 presents expression patterns across tissues and stages of development from NCBI GEO.^{31,32} In Figures 8a, 8b, 8c, and 9a, we see that FAM151A is very highly expressed in adult kidney tissue and expressed at a lower level in small intestine and liver

³¹NCBI Gene entry on FAM151A. https://www.ncbi.nlm.nih.gov/gene/338094.

 $[\]label{eq:search} {}^{32} \text{NCBI Geo Search for FAM151A. https://www.ncbi.nlm.nih.gov/geoprofiles/?term=FAM151A.}$

Figure 10: Immunnohistochemical staining of FAM151A in human kidney tissue reveals high expression in tubules but not in glomeruli.

tissues. Figure 8d suggests that FAM151A is not highly expressed in embryonic tissues compared to adult tissue (with reads under 2 RPKM in fetal tissues and above 15 RPKM in adult kidney tissue), while Figure 9b shows FAM151A is first significantly expressed at the stage of development when an embryo contains 8 cells.

In Figure 10, we see three slices of adult kidney tissue that have undergone H&E and DAB staining with FAM151A antibodies from the Human Protein Atlas.³³ From these, we see high expression of FAM151A in the tubules of the kidney, and low to no expression in the glomeruli. The glomerulus is primarily responsible for blood filtration, while the tubules are responsible for reabsorption of filtered substances and transport.³⁴ Furthermore, there is some evidence that FAM151A protein expression is localized specifically to the luminal side of proximal tubule.^{35,36}

The Human Protein Atlas also presents the data shown in Figure 11, where we see that FAM151A is transcribed in the small intestine, liver, and kidney, but only translated to protein at high levels in the kidney.

Differential Expression Conditions of FAM151A

Figures 12-14 display data on differential expression of FAM151A from NCBI GEO.³⁷ Figure 12 displays differential mRNA expression of FAM151A in normal and cancerous kidney tissues. In the figure, we clearly see that FAM151A is more highly expressed in normal tissue than in tumor tissue, and that low expression of FAM151A consistent across studied

 $^{^{33}{\}rm The}$ Human Protein Atlas entry on FAM151A. https://www.proteinatlas.org/ENSG00000162391-FAM151A.

³⁴Wallace, M. A. (1998). Anatomy and physiology of the kidney. *AORN Journal*, 68(5), 799–820. https://doi.org/https://doi.org/10.1016/S0001-2092(06)62377-6.

³⁵Habuka, M., Fagerberg, L., Hallström, B. M., Kampf, C., Edlund, K., Sivertsson, Å., Yamamoto, T., Pontén, F., Uhlén, M., & Odeberg, J. (2015). The kidney transcriptome and proteome defined by transcriptomics and antibody-based profiling. *PLOS ONE*, 9(12), 1–19. https://doi.org/10.1371/journal. pone.0116125.

³⁶The Human Protein Atlas entry on FAM151A. https://www.proteinatlas.org/ENSG00000162391-FAM151A.

³⁷NCBI Geo Search for FAM151A. https://www.ncbi.nlm.nih.gov/geoprofiles/?term=FAM151A.

Figure 11: RNA expression and protein detection of FAM151A from the Human Protein Atlas.

Figure 12: Expression of FAM151A in normal and renal carcinomic kidney tissue.

Figure 13: Expression of FAM151A in normal and Type II diabetic kidney tissue.

genotypes. This potentially suggests a causal relationship, as the FAM151A protein is present in kidney tubules.

We also investigate whether FAM151A could be associated with a prominent kidneyrelated condition, type 2 diabetes. Figure 13 provides no evidence that FAM151A is correlated with diabetes conditions, although it has significantly variable expression from sample to sample.

Figure 14 presents FAM151A expression in hepatitic and non-hepatitic liver tissue, and we measure lower expression in tissue samples with hepatitis. While the Human Protein Atlas suggests that the FAM151A mRNA transcript is not transcribed into protein in the liver, there still appears to be some sort of relationship between expression and alcoholic hepatitis.

Furthermore, some research has found evidence of differential expression of FAM151A in β -cells between high and low fat 20 week male mice (p < 0.0001).³⁸ However, no other evidence was found to corroborate this finding, and so we do not further investigate this thread.

 $^{^{38}\}mathrm{Miranda},$ M. (2021). Exploring $% \mathrm{SM}/\mathrm{J}$ -Cell Function and Heterogeneity in Obese SM/J Mice.

Figure 14: Expression of FAM151A in normal and alcoholic hepatitic liver tissue.

Figure 15: Expression pattern of HNF1 from NCBI Gene

FAM151A Promoter and 5' UTR Analysis

FAM151A Predicted Promoter TFs

FAM151A has one promoter region predicted by Genomatix ElDorado, a portion of which is shown in the multiple sequence alignment and TF binding site prediction annotated sequence presented in Appendix D.³⁹ The multiple sequence alignment was created using Clustal Omega.⁴⁰ Transcription factors binding sites were predicted using the JASPAR Core database and Genomatix Matinspector.^{41,42} Transcription factors predicted by Genomatix were filtered based on matrix score as well as selective expression in the kidney.

One transcription factor, HNF1, explains much the expression pattern of FAM151A. Its binding site is conserved in all orthologs, besides mouse and rat, and located sufficiently

³⁹Genomatix Software Suite. https://www.genomatix.de/solutions/genomatix-software-suite.html.

⁴⁰Clustal Omega. https://www.ebi.ac.uk/Tools/msa/clustalo/.

⁴¹JASPAR Core. https://jaspar.genereg.net/.

⁴²Genomatix Software Suite. https://www.genomatix.de/solutions/genomatix-software-suite.html.

Figure 16: Genomic context of FAM151A 3' UTR.

close to the start of transcription, while sufficiently distant from a cluster of transcription factor binding sites downstream that could prevent proper binding. Furthermore, Figure 15 shows HNF1's expression pattern across tissues as reported by NCBI Gene, where we see high expression in the kidney, small intestine, and liver, consistent with the expression patterns of FAM151A reported earlier.⁴³

FAM151A 3' UTR Analysis

The 3' UTR of the FAM151A mRNA transcript is 87 base pairs in length, which is unusually short. However, Figure 16 shows the region in its genomic context, where we observe that the 3' UTR of FAM151A completely overlaps the 3' UTR of ACOT11 on the reverse strand, and that the last exon of ACOT11 lies only a few base pairs after the end of the 3' UTR of FAM151A, explaining its length.⁴⁴

Appendix E presents an alignment of the 3' UTRs of 7 primates, where differences between the sequences and the consensus sequence are highlighted.⁴⁵ BLAST was not able to identify 3' UTRs outside of primates, likely due to the short length of the sequence.⁴⁶

Figure 17 shows the secondary structure of the 3' UTR of FAM151A, as predicted by mFOLD, along with protein binding sites predicted by RNAPDB.^{47,48} Figure 18 shows a predicted tertiary structure based on the secondary structure predicted using RNAComposer and visualized with PyMol.^{49,50} We see that the most highly conserved portion (highlighted) of the UTR consists of a hairpin and an interior loop, which contains three important sites, the Poly-A signal, and predicted binding sites for ZFP36 and EIF4B. ZFP36 is a zinc finger protein that promotes degradation of the mRNA through recruitment of deadenylases and

⁴³NCBI Gene entry on HNF1. https://www.ncbi.nlm.nih.gov/gene/6927.

⁴⁴UCSC Genome Browser. https://genome.ucsc.edu/.

⁴⁵Clustal Omega. https://www.ebi.ac.uk/Tools/msa/clustalo/.

⁴⁶NCBI Basic Local Alignment Search Tool. https://blast.ncbi.nlm.nih.gov/Blast.cgi.

⁴⁷Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Research*, *31*(13), 3406–3415. https://doi.org/10.1093/nar/gkg595.

⁴⁸RBPDB: The database of RNA-binding protein specificities. http://rbpdb.ccbr.utoronto.ca/.

⁴⁹Popenda, M., Szachniuk, M., Antczak, M., Purzycka, K. J., Lukasiak, P., Bartol, N., Blazewicz, J., & Adamiak, R. W. (2012). Automated 3d structure composition for large rnas. *Nucleic Acids Research*, 40(14), e112–e112. https://doi.org/10.1093/nar/gks339.

⁵⁰Schrodinger, LLC. (2015). The PyMOL molecular graphics system, version 1.8.

Figure 17: Annotated predicted secondary structure of FAM151A 3' UTR.

Figure 18: Two views of tertiary structure of FAM151A 3' UTR as predicted by RNAComposer. Predicted binding site of FUS shown in green, EIF4B in red, ZFP36 in blue, and the overlap between binding sites of EIF4B and ZNF36 in purple.

exoribonucleases, while EIF4B is a translation initiation factor (both are expressed ubiquitously).^{51,52} Because the ZFP and EIF4B binding sites overlap by two bases, the translation of the transcript will be determined by relative expressions of the two factors.

Examining these two factors explains FAM151A's differential expression in the kidney. The Human Protein Atlas provides data on ZFP36 and EIF4B. In the glomeruli, ZFP36 is expressed while EIF4B is not, while in the tubules, EIB4B is expressed, while ZFP36 is not.^{53,54} Furthermore, the cellular location of both factors is identified as cytoplasmic/membranous, which matches the expectation of regulation of FAM151A, a transmembrane protein.

Additionally, RBPDB predicts a FUS binding site close to the 5' end of the 3' UTR, which is also conserved. FUS is involved in pre-mRNA splicing and export of mRNA to the cytoplasm, but does not provide additional information to explain differential expression of FAM151A.⁵⁵

⁵¹Rodriguez-Gomez, G., Paredes-Villa, A., Cervantes-Badillo, M. G., Gomez-Sonora, J. P., Jorge-Perez, J. H., Cervantes-Roldan, R., & Leon-Del-Rio, A. (2021). Tristetraprolin: A cytosolic regulator of mRNA turnover moonlighting as transcriptional corepressor of gene expression. *133*(2), 137–147. https://doi.org/10.1016/j.ymgme.2021.03.015.

⁵²NCBI Gene entry on EIF4B. https://www.ncbi.nlm.nih.gov/gene/1975.

⁵³Human Protein Atlas entry on ZFP36. https://www.proteinatlas.org/ENSG00000128016-ZFP36/tissue/kidney.

⁵⁴Human Protein Atlas entry on EIF4B. https://www.proteinatlas.org/ENSG00000063046-EIF4B/tissue/kidney.

⁵⁵NCBI Gene entry on FUS. https://www.ncbi.nlm.nih.gov/gene/2521.

Protein

Properties and Post-Translational Modifications of FAM151A Molecular Weight of Protein FAM151A

Figure 19: Western Blot of FAM151A.

Expasy predicts an isoelectric point of 6.19 and a molecular weight of 64kDa for FAM151A.⁵⁶ This does not agree with the weight of FAM151A experimentally derived from western blot experiments from ThermoFisher, which is approximately 95kDa, as shown in Figure 19.⁵⁷ This suggests that either the antibody did not properly capture FAM151A, that FAM151A undergoes significant post-translational modification, or that FAM151A was not properly separated from binding partners before Western blot.

N-Linked Glycosylation Sites of FAM151A

FAM151A is predicted to undergo N-linked glycosylation in 5 sites by NetNGlyc, ELM, and MotifScan, 4 of which are predicted by PhosphoSitePlus.^{58,59,60,61} The one site not predicted by PhosphoSitePlus is not highly conserved, so it was not regarded as notable, while the other four are labelled in the annotated conceptual translation and its associated schematic diagram. This increases our confidence that the C-terminal end of FAM151A lies outside the cell, where this glycosylation occurs. Thus, phosphorylation sites were not predicted, as the major portion of FAM151A lies outside the cell. No other significant post-translational modifications were found, including disulfide bonds.

⁵⁶Expasy: Compute pI/Mw. https://web.expasy.org/cgi-bin/compute_pi/pi_tool.

 $^{^{57} \}rm ThermoFisher Antibodies for FAM151A. https://www.thermofisher.com/antibody/product/FAM151A-Antibody-Polyclonal/PA5-53502.$

⁵⁸NetNGlyc. https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0.

⁵⁹ELM: The Eukaryotic Linear Motif resource for Functional Sites in Proteins. http://elm.eu.org/search/. ⁶⁰MyHits Motif Scan. https://myhits.sib.swiss/cgi-bin/motif_scan.

⁶¹PhosphoSitePlus. https://www.phosphosite.org/homeAction.action.

Figure 20: DeepLoc prediction graph of FAM151A subcellular localization.

Figure 21: Protter diagram of FAM151A.

FAM151A Resides in the Cell Membrane

There exists sufficient evidence to claim that FAM151A is a transmembrane protein primarily residing outside the cell membrane. DeepLoc predicts that FAM151A is localized to the cell membrane with 43% probability, as shown in Figure 20.⁶² In Figure 21, we see that Protter predicts one transmembrane region near the N-terminus of the peptide, and that the rest of the protein lies outside the cell, as does SAPS (which makes no other significant predictions).^{63,64} Additionally, PSORTII predicts that FAM151A has Type II membrane

 $^{^{62} {\}rm DeepLoc:}$ Prediction of eukaryotic protein subcellular localization using deep learning. https://services.healthtech.dtu.dk/service.php?DeepLoc-1.0.

⁶³Omasits, U., Ahrens, C. H., Müller, S., & Wollscheid, B. (2013). Protter: Interactive protein feature visualization and integration with experimental proteomic data. *Bioinformatics*, 30(6), 884–886. https://doi.org/10.1093/bioinformatics/btt607.

⁶⁴Statistical Analysis of Protein Sequences. https://www.ebi.ac.uk/Tools/seqstats/saps/.

Figure 22: Antibody staining of FAM151A reveals cell membrane localization.

topology, that is, the N-terminus lies inside the membrane, and the protein is a singlepass protein (PSORT's subcellular localization prediction is not included as it does not contain an option for the cell membrane).⁶⁵ This is consistent with UniProtKB's annotation of one transmembrane region.⁶⁶ Finally, staining data of FAM151A in kidney tissue from ThermoFischer antibodies shown in Figure 22 empirically confirms the presence of FAM151A in membrane tissue.⁶⁷

Structure of FAM151A

Figure 23 shows the tertiary structure of protein FAM151A as predicted by AlphaFold2, visualized using PyMol.^{68,69} The vast majority of the structure of the two DUF2181s is predicted with very high confidence (pLDDT > 90). Furthermore, the prediction agrees with all of the previous known information on the protein: the transmembrane alpha helix is predicted correctly, the two DUF2181s are properly separated, and the structure of the domains (shown in Figure 24) is correctly predicted as a TIM barrel fold, which is known from homology between DUF2181 and bacterial glycerophosphodiester phosphodiesterases.⁷⁰

I-TASSER did not correctly predict the tertiary structure of FAM151A, as it did not predict separation of the two main protein domains, nor the TIM barrel fold structure of the domains, as shown in Figure 25.⁷¹ Thus, its prediction is not discussed at length here. The same reasoning applies to secondary structure prediction algorithms.

⁶⁵PSORT II Prediction. https://psort.hgc.jp/form2.html.

⁶⁶UniProtKB entry on FAM151A. https://www.uniprot.org/uniprot/Q8WW52.

 $^{^{67}} ThermoFisher Antibodies for FAM151A.$ https://www.thermofisher.com/antibody/product/FAM151A-Antibody-Polyclonal/PA5-53502.

⁶⁸Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., ... Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. *Nature*, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2.

⁶⁹Schrodinger, LLC. (2015). The PyMOL molecular graphics system, version 1.8.

⁷⁰Findlay, A. S., McKie, L., Keighren, M., Clementson-Mobbs, S., Sanchez-Pulido, L., Wells, S., Cross, S. H., & Jackson, I. J. (2020a). Fam151b, the mouse homologue of C.elegans menorin gene, is essential for retinal function. *Scientific Reports*, 10(1). https://doi.org/10.1038/s41598-019-57398-4.

⁷¹Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. *Nature Protocols*, 5(4), 725–738. https://doi.org/10.1038/nprot.2010.5.

Figure 23: Tertiary structure of FAM151A as predicted by AlphaFold2. The transmembrane domain is highlighted in purple, the first DUF2181 in blue, and the second DUF2181 in green, while interdomain regions are shown in gray. Both ribbon and surface diagrams are shown.

Figure 24: Tertiary structure of DUF2181s of FAM151A as predicted by AlphaFold2. The first is shown in blue on the left, the second in green on the right. Both are correctly predicted as TIM barrel folds.

Figure 25: I-TASSER FAM151A tertiary structure prediction. Domains are colored using the same scheme as Figure 23.

Figure 26: FAM151A tertiary structure colored by conservation. Yellows indicate highly conserved residues, purples indicate poorly conserved residues.

Figure 27: Side by side views of the first DUF2181. The first diagram highlights conservation, the second, published active site residues.

Figure 26 displays the predicted tertiary structure of FAM151A where each amino acid is colored according to the Shannon entropy of that residue in an MSA of 20 Eumetazoan orthologs of FAM151A (see Figures 23). This view makes it obvious that the highly conserved portions of FAM151A are concentrated in the first DUF2181.

Function of Enzymatically Active DUF2181

Active Site Residues

Appendix C presents two alignments of DUF2181s with purported active site residues highlighted. The first is an alignment of DUF2181s in the FAM151/Menorin family (described above in discussion of FAM151 phylogeny), where we see active site residues conserved in almost all orthologs. The second is an alignment of seven DUF2181/GDPD domains, aligned using Clustal Omega.⁷² Of the DUF domains, two are found in FAM151A (F151A1,F151A2), one is found in FAM151B (F151B1), and one in menorin, a *C. elegans* homolog of the FAM151 family (MNR1CE). We also take a GDPD domain from humans (GPCP1H), *E. coli* (GDPDEC), and *O. iheyensis* (GDPDOI). In this alignment, active site residues in the GDPD family are highlighted in red.⁷³ We see from this alignment than the second DUF2181 in FAM151A does not contain any conserved active sites, thus we predict it to be nonfunctional. Note that the alignment contains a roughly 100 aa omission that contains no active sites for brevity.

To further validate our hypothesized FAM151A DUF2181 active sites, we plot conservation of the first domain in direct FAM151A orthologs and active site residues side by side in Figure 27. From this we see that that active sites in FAM151A are highly conserved (all were conserved in 19 or 20 of 20 orthologs), and all lie in the inside of the barrel, providing further evidence of their functionality and AlphaFold2's prediction accuracy.

⁷²Clustal Omega. https://www.ebi.ac.uk/Tools/msa/clustalo/.

⁷³NCBI Structure entry on Conserved Protein Domain Family GDPD. https://www.ncbi.nlm.nih.gov/ Structure/cdd/cd08556.

Example Functions of GDPD/PLCD Superfamily Phosphodiesterases

Thus, to understand the enzymatic function of FAM151A, we investigate the function of the first DUF2181 as a phosphodiesterase. As mentioned above, the DUF2181 present in FAM151/Menorin family is a member of the GDPD/PLCD superfamily, so we know that the substrate of FAM151A contains a phosphodiester bond, and is most likely a glycerophosphodiester or a phospholipid.^{74,75} However, phosphodiesterases bind to a large variety of substrates, so there is no obvious candidate for FAM151A's substrate.⁷⁶ Currently, the exact substrate that menorin binds to is unknown, so we cannot use this to predict the enzymatic activity of FAM151A. Thus, we examine a few representative phosphodiesterases similar in expression to FAM151A to hypothesize about possible substrates.

We first investigate GDPD5 (glycerophosphodiester phosphodiesterase domain-containing protein 5), a transmembrane phosphodiesterase involved in neuron development.⁷⁷ GDPD5 is also highly expressed in kidney tubules but not glomeruli, making it extremely similar to the FAM151/Menorin family.⁷⁸ GDPD5 (also known as GDE2) is known to cleave the glycosylphosphatidylinositol (GPI) anchor of protein RECK, but this activity is generally only attributed to six-transmembrane GDPDs, rendering it unlikely that FAM151A shares this function.⁷⁹ However, GDPD5 is also known to hydrolyze glycerophosphocholine (GPC), an organic osmolyte in the kidney, in order to maintain homeostatic sodium chloride and urea levels in the renal inner medulla.⁸⁰

Next, we turn to ENPP6 (ectonucleotide pyrophosphatase/phosphodiesterase 6), a GPIanchored transmembrane phosphodiesterase highly expressed in the brain and kidney proximal renal tubules.^{81,82} ENPP6 hydrolyzes both α -GPC (known to be involved in Alzheimer's pathways) and β -GPC as part of the choline metabolism pathway.^{83,84}

⁷⁵Kolesnikov, Y. S., Nokhrina, K. P., Kretynin, S. V., Volotovski, I. D., Martinec, J., Romanov, G. A., & Kravets, V. S. (2012). Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells. *Biochemistry (Moscow)*, 77(1), 1–14. https://doi.org/10.1134/s0006297912010014.

⁷⁷UniProtKB Entry on GDPD5. https://www.uniprot.org/uniprot/Q8WTR4.

⁷⁸Human Protein Atlas Entry on GDPD5. https://www.proteinatlas.org/ENSG00000158555-GDPD5/ tissue.

⁷⁹Park, S., Lee, C., Sabharwal, P., Zhang, M., Meyers, C. L. F., & Sockanathan, S. (2013). GDE2 Promotes Neurogenesis by Glycosylphosphatidylinositol-Anchor Cleavage of RECK. *Science*, 339(6117), 324–328. https://doi.org/10.1126/science.1231921.

⁸⁰Gallazzini, M., Ferraris, J. D., & Burg, M. B. (2008). GDPD5 is a glycerophosphocholine phosphodiesterase that osmotically regulates the osmoprotective organic osmolyte GPC. *Proceedings of the National Academy of Sciences*, 105(31), 11026–11031. https://doi.org/10.1073/pnas.0805496105.

⁸¹UniProtKB Entry on ENPP6. https://www.uniprot.org/uniprot/Q6UWR7.

⁸²Human Protein Atlas Entry on ENPP6. https://www.proteinatlas.org/ENSG00000164303-ENPP6/ tissue.

⁸⁴Parnetti, L., Mignini, F., Tomassoni, D., Traini, E., & Amenta, F. (2007). Cholinergic precursors in

 $^{^{74}\}mathrm{EXPASY}$ Enzyme Entry on Glycerophosphodiester phosphodiester ase. https://enzyme.expasy.org/ EC/3.1.4.46.

⁷⁶Corda, D., Mosca, M. G., Ohshima, N., Grauso, L., Yanaka, N., & Mariggiò, S. (2014). The emerging physiological roles of the glycerophosphodiesterase family. *The FEBS Journal*, 281(4), 998–1016. https://doi.org/https://doi.org/10.1111/febs.12699.

⁸³Morita, J., Kano, K., Kato, K., Takita, H., Sakagami, H., Yamamoto, Y., Mihara, E., Ueda, H., Sato, T., Tokuyama, H., Arai, H., Asou, H., Takagi, J., Ishitani, R., Nishimasu, H., Nureki, O., & Aoki, J. (2016). Structure and biological function of ENPP6, a choline-specific glycerophosphodiester-phosphodiesterase. *Scientific Reports*, 6(1). https://doi.org/10.1038/srep20995.

Finally, although the substrate of menorin is not known, we note experiments conducted in which knockouts of sax-7, known to act as a coligand with menorin, were exposed to cholinesterase inhibitors provide data consistent with sax-7 being involved in acetylcholine reception, along with gtl-2 (human orthologs TRMP1/3/7).^{85,86} Thus, given all the evidence above, we present the most likely substrate of the biochemically active DUF2181 of FAM151A as a glycerophosphocholine, especially given its double role as neurotransmitter precursor and osmolyte.

FAM151A Interacting Proteins

Binding Partners in Orthologs

In *C. elegans*, menorin is observed to work in similar pathways as sax-7, the *C. elegans* homolog of L1CAM (L1 cell adhesion molecule) through double knockout experiments.⁸⁷ Furthermore, additional experiments have coimmunoprecipitated menorin and sax-7, stronger in the presence of DMA-1 (also involved in neuron branching), all but confirming physical interaction of menorin and sax-7, with DMA-1 potentially being a third member of the complex.^{88,89} This suggests that L1CAM could have a potential interaction with FAM151A, although FAM151B's expression in the brain and more direct relationship to menorin suggests that FAM151B is a more likely candidate for interaction with L1CAM.

Predicted by Existing Databases

Two binding partners of FAM151A have been obtained by co-immunoprecipitation, CD81 (Cluster of Differentiation 81) and APP (amyloid beta precursor protein).^{90,91} However, it is unlikely that either represents a meaningful interaction. While the fact that CD81 is a transmembrane protein with a ubiquitously expressed mRNA would suggest a that it is a

the treatment of cognitive impairment of vascular origin: Ineffective approaches or need for re-evaluation? *Journal of the Neurological Sciences*, 257(1-2), 264–269. https://doi.org/10.1016/j.jns.2007.01.043.

⁸⁵Dong, X., Liu, O. W., Howell, A. S., & Shen, K. (2013). An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis. *Cell*, 155(2), 296–307.

⁸⁶Opperman, K., Moseley-Alldredge, M., Yochem, J., Bell, L., Kanayinkal, T., & Chen, L. (2014). A novel nondevelopmental role of the SAX-7/l1cam cell adhesion molecule in synaptic regulation in caenorhabditis elegans. *Genetics*, 199(2), 497–509. https://doi.org/10.1534/genetics.114.169581.

 $^{^{87}}$ Ziegenfuss, J. S., & Grueber, W. B. (2013). SAX-7 and menorin light the path for dendrite morphogenesis. Cell, 155(2), 269–271. https://doi.org/10.1016/j.cell.2013.09.029.

⁸⁸Salzberg, Y., Díaz-Balzac, C. A., Ramirez-Suarez, N. J., Attreed, M., Tecle, E., Desbois, M., Kaprielian, Z., & Bülow, H. E. (2013). Skin-derived cues control arborization of sensory dendrites in caenorhabditis elegans. *Cell*, 155(2), 308–320. https://doi.org/10.1016/j.cell.2013.08.058.

⁸⁹Liu, O. W., & Shen, K. (2011). The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in c. elegans. *Nature Neuroscience*, 15(1), 57–63. https://doi.org/10.1038/nn.2978.

⁹⁰Palor, M., Stejskal, L., Mandal, P., Lenman, A., Alberione, M. P., Kirui, J., Moeller, R., Ebner, S., Meissner, F., Gerold, G., Shepherd, A. J., & Grove, J. (2020). Cholesterol sensing by CD81 is important for hepatitis C virus entry. *Journal of Biological Chemistry*, 295(50), 16931–16948. https://doi.org/10.1074/jbc.ra120.014761.

⁹¹Oláh, J., Vincze, O., Virók, D., Simon, D., Bozsó, Z., Tőkési, N., Horváth, I., Hlavanda, E., Kovács, J., Magyar, A., Szűcs, M., Orosz, F., Penke, B., & Ovádi, J. (2011). Interactions of pathological hallmark proteins. *Journal of Biological Chemistry*, 286(39), 34088–34100. https://doi.org/10.1074/jbc.m111.243907.

strong candidate for potential interaction, the Human Protein Atlas reports no CD81 protein expression in kidney tissue.^{92,93} Examining APP, it is also a transmembrane protein, yet not expressed in the kidney.⁹⁴ However, APP is highly expressed in the brain, and known to play a key role in Alzheimer's pathways, suggesting that it could be an interaction partner of FAM151B.⁹⁵

Similarly Expressed Phosphodiesterases

As GDPD5 and ENPP6 both share similar functions to FAM151A and are expressed in similar patterns, both are plausible candidates for interaction.

⁹²NCBI Gene entry on CD81. https://www.ncbi.nlm.nih.gov/gene/975.

⁹³Human Protein Atlas entry on CD81. https://www.proteinatlas.org/ENSG00000110651-CD81. ⁹⁴Human Protein Atlas entry on APP, https://www.proteinatlas.org/ENSG00000142102 APP

⁹⁴Human Protein Atlas entry on APP. https://www.proteinatlas.org/ENSG00000142192-APP.

⁹⁵O'Brien, R. J., & Wong, P. C. (2011). Amyloid precursor protein processing and Alzheimer's disease. Annual Review of Neuroscience, 34(1), 185–204. https://doi.org/10.1146/annurev-neuro-061010-113613.

Future Work

FAM151A Substrate Determination

To understand the function of FAM151A, the most critical piece of information that is yet undetermined is the phosphodiester bond-containing substrate to which FAM151A binds. This, the experimental procedure which should be most highly prioritized is one that would determine this substrate. Above, we postulate that the substrate of FAM151A is a glycerophosphocholine. Evidence of this function could be found by comparing the glycerophosphocholine content of urine of FAM151A knockout mice (used by Findlay et. al.) with the urine of wildtype mice.⁹⁶ Additionally, FAM151A could be purified and tested against an assay of glycerophosphocholines to determine substrate preference.

FAM151A/B Interacting Protein Experiments

Determining if members of the FAM151 family interact with other proteins to form a complex is also of significant importance. We can detect these interacting proteins through a variety of methods. To do this, we propose testing via co-immunoprecipitation. Because the interaction between menorin and sax-7 has been verified via this technique, and there exists a discrepancy between the predicted molecular weight of FAM151A and the weight of FAM151A as measured by Western blot with anti-FAM151A antibodies, it is very plausible that co-immunoprecipitation could identify a binding partner of FAM151A, if one exists.

FAM151A miRNA Binding Site Evaluation

Earlier, we described SNP rs11206394, which may impact occurrence of colorectal cancer via impact on an 3' UTR miRNA binding site, and identified a few candidate interactions. To fully determine this interaction, which could be of clinical relevance, we must experimentally verify any mRNA/miRNA interactions. This can be done by using a luciferase miRNA assay, which involves inserting the 3'-UTR of FAM151A (or ACOT11) after a luciferase or GFP, and then measuring luciferase activity (compared to a control).⁹⁷ This assay can be used to measure expression for both genotypes of the 3' UTR under many target miRNAs, potentially providing evidence of miRNA binding sites affected by the SNP.

⁹⁶Findlay, A. S., McKie, L., Keighren, M., Clementson-Mobbs, S., Sanchez-Pulido, L., Wells, S., Cross, S. H., & Jackson, I. J. (2020a). Fam151b, the mouse homologue of C.elegans menorin gene, is essential for retinal function. *Scientific Reports*, 10(1). https://doi.org/10.1038/s41598-019-57398-4.

⁹⁷Jin, Y., Chen, Z., Liu, X., & Zhou, X. (2013). Evaluating the microrna targeting sites by luciferase reporter gene assay. In S.-Y. Ying (Ed.), *Microrna protocols* (pp. 117–127). Humana Press. https://doi.org/10.1007/978-1-62703-083-0_10.

Appendix A: Organism Key and Accession Numbers

Key	Organism	Common Name	FAM151 Copies
Aag	Aricia agestis	Brown argus	1
Ace	$Ancylostoma\ ceylanicum$	Parasitic roundworm	1
Aja	Anneissia japonica	Crinoid	2
Asi	Alligator sinensis	Chinese alligator	2
Bbu	Bufo bufo	Toad	2
Bfl	$Branchiostoma\ floridae$	Florida lanclet	2
Ccn	Chrysoperla carnea	Green lacewing	1
Сср	$Cyprinus\ carpio$	Common carp	2
Cel	$Caenorhab ditis\ elegans$	Nematode	1
Cin	$Ciona \ intestinalis$	Sea squirt	1
Cpi	Chrysemys picta bellii	Painted turtle	2
Cse	$Coccinella\ septempunctata$	Seven-spot ladybird	1
Cte	Capitella teleta	Annelid worm	2
Dme	$Drosophila\ melanogaster$	Fruit fly	1
Dpa	Diploscapter pachys	Nematode	1
Dre	Danio rerio	Zebrafish	2
Eca	$Equus \ caballus$	Horse	2
Gae	$Gigantopelta \ aegis$	Deep sea snail	2
Gga	Gallus gallus	Chicken	1
Hsa	Homo sapiens	Human	2
Lan	Lingula anatina	Brachiopod	2
Lva	$Lytechinus\ variegatus$	Green sea urchin	2
Mmu	Mus musculus	Mouse	2
Obi	Octopus bimaculoides	California two-spot octopus	1
Ofu	Owenia fusiformis	Polychaete worm	2
Pan	Papio anubis	Olive baboon	2
Pma	Papilio machaon	Old World swallowtail	1
Ptr	Pan troglodytes	Chimpanzee	2
Rbi	$Rhinatrema\ bivittatum$	Two-lined caecilian	2
Rty	Rhincodon typus	Whale shark	2
Scl	Styela clava	Stalked sea squirt	1
Sph	Sepia pharaonis	Pharaoh cuttlefish	1
Spi	Stylophora pistillata	Hood coral	2
Sra	Strongyloides ratti	Nematode parasite	1
Vpa	Vicugna pacos	Alpaca	2
Vpe	$V espula\ pensylvanica$	Western yellowjacket	1
Xla	Xenopus laevis	African clawed frog	2

Table A1: Key of organism abbreviations in following diagrams.

Key	Accession number 1 (FAM151A)	Accession number 2 (FAM151B/Menori
Aag	-	XP_041984464.1
Ace	-	EYB95295.1
Aja	XP_033116333.1	$XP_{033108640.1}$
Asi	$XP_{006025880.1}$	$XP_025070544.1$
Bbu	XP_040262912.1	$XP_040277425.1$
Bfl	$XP_{035660277.1}$	$XP_{035660473.1}$
Ccn	-	XP_044733010.1
Сср	$XP_042575185.1$	$XP_042579844.1$
Cel	-	$NP_507991.1$
Cin	_	XP_002121148.3
Cpi	XP_005284924.2	$XP_{008165715.1}$
Cse	_	XP_044747787.1
Cte	ELT90991.1	ELT88790.1
Dme	_	$NP_{001245933.1}$
Dpa	_	PAV58873.1
Dre	$NP_{001093565.1}$	NP_001003531.1
Eca	$XP_{001488568.4}$	XP_023473854.1
Gae	XP_041378357.1	XP_041358246.1
Gga	_	$XP_{003643128.1}$
Hsa	$NP_{788954.2}$	NP_991111.2
Lan	XP_013411281.1	$XP_013399869.1$
Lva	$XP_041464769.1$	$XP_041484609.1$
Mmu	$NP_{666261.1}$	$NP_{001157099.1}$
Obi	-	XP_014778013.1
Ofu	CAC9668553.1	CAC9569733.1
Pan	$XP_{003891985.2}$	$XP_017815193.1$
Pma	-	$XP_014369256.1$
Ptr	$XP_016774503.1$	$XP_016808561.1$
Rbi	XP_029474719.1	$XP_{029430098.1}$
Rty	XP_020366386.1	$XP_{020386473.1}$
Scl	-	XP_039273176.1
Sph	-	CAE1178732.1
Spi	PFX14114.1	XP_022808211.1
Sra	-	XP_024503321.1
Vpa	$XP_{006200587.1}$	$XP_{031530378.1}$
Vpe	-	XP_043676237.1
Xla	-	XP_018116415.1

Key | Accession number 1 (FAM151A) | Accession number 2 (FAM151B/Menorin)

Table A2: Accession numbers of proteins found in orthologs.

Appendix B: Multiple Sequence Alignments of FAM151A Orthologs

Global Alignments of FAM151A Orthologs

Strict Orthologs

Cca_FAM151A	1	MEQKDEKNCNSEEEGERQGPKTFLGIFTREKF <mark>IILCVVIGLMA</mark> LLL-III <mark>L</mark> TSV	TMEM
Dre_FAM151A	1	MEVKEE <mark>K</mark> S <mark>C</mark> SIGEGEEAEGKEAKTVLGIFTREQF <mark>IMLCVG</mark> LGLIALLL-IIT <mark>L</mark> TSV	
Hsa_FAM151A	1	NQVKW <mark>V</mark> FAGITCVSVVVIAA <mark>IVL</mark> A	
Ptr_FAM151A	1	NQVKW <mark>V</mark> FAGIT <mark>CV</mark> SVVVIAAIVLA	
Pan_FAM151A	1	NQVNWVLAGITCVSVVVIATTVLA	
Mmu_FAM151A	1	SQAKW <mark>IL</mark> AGSVTVTLVLAISLILG	
Eca_FAM151A	1	SQTRWALAGSASMALVFAIGMVLG	
Vpa_FAM151A	1	SQTKWALVS <mark>GASVAVV</mark> FTIGMVLC	
Rty_FAM151A	1	MLELVPDQEFLYKDGRNGLSIRRRWKLLAGLFFAVLAAAYLALVGYFA	
Xla_FAM151A	1	<mark>V</mark> <mark>AGIGVFLGV</mark> CIA-IVALC	
Bbu_FAM151A	1	<mark>V</mark> <mark>AGVCVFLGV</mark> CVA-I <mark>AAL</mark> C	
Rbi_FAM151A	1	MAACESFKASPLPSP <mark>K</mark> RCSLDGLRTIVVC	
Cpi_FAM151A	1	AAVI <mark>GVC</mark> AVV <mark>V</mark> ISTCIALAVS	
Asi_FAM151A	1	MTSSK <mark>KRC</mark> PSMGRKG <mark>AAIAGVCAVAAVAA</mark> CVA <mark>LAV</mark> C	
Consensus	1	Q-KWVL-GGVCVFLVVIAALVLC	
Cca_FAM151A	54	ELITQSDASVNMEMEPEPSD <mark>GDMLD</mark> FILQIGETQEKDGLYATWYHAANNKSEMNKALNSDVMILEADI	DUF2181
Dre_FAM151A	56	FVIAKSDASVDVDM [®] PFPSD <mark>GDMLD</mark> FILLQTGETEEKDGLYATWYHAAN <mark>SKSEM</mark> SK <mark>ALNSDVMILEADV</mark>	
Hsa_FAM151A	34	ITLRRPGCEL-EACSPDADMLDYLLSLGQTSRRDALEVTWYHAANSKKAMTAALNSNITVLEADV	
Ptr_FAM151A	34	ITLRRPGSEL- <mark>EA</mark> CSPDADMLDYLLSLGQI <mark>SRRDALEVTWYHAANSK</mark> KAMTAALNSNITVLEADV	
Pan_FAM151A	34	ITLWRPGCEL- <mark>EA</mark> CSPDADMLDYLLSLGQI <mark>SRRDALEVTWYHAANSKEAM</mark> TA <mark>ALNSNITVLEADV</mark>	
Mmu_FAM151A	34	L <mark>TL</mark> HQGTQPGCENDAICGPDA <mark>DMLDYL</mark> MGMGQI <mark>SHRDGLLVTWYHAANSKKEM</mark> AA <mark>ALNSDVMVLEADV</mark>	
Eca_FAM151A	34	FTLQQQTRPGCEQ-AACRPDADMLDYLLSQGQISQRDGLLVTWYHAANSQEEMGAALSGNAMVLEADV	
Vpa_FAM151A	34	F <mark>TL</mark> QEHTQPGCKQDAVCRPDA <mark>DMLDYLLSLGQI</mark> SQ <mark>RDGLLVNWYHAAN</mark> SQE <mark>DM</mark> KA <mark>AL</mark> SSDAMVLEADV	
Rty_FAM151A	49	VYRNFFPAKGFEVNGS <mark>H</mark> SPG <mark>GDLLDYLL</mark> QHG <mark>MTDRKDGLLVTWHHAANS</mark> KSEMEAALKGSAMALEADV	
Xla_FAM151A	30	VIILGRPHSKDPSPSFSTGDDMLEYLMYQGETRSKDGLLVSWYHAANSKSEMEEALNSDIMILEADV	
Bbu_FAM151A	30	LTLGQPRKKDSKPALSSG <mark>GDMLDYL</mark> KLQ <mark>GET</mark> ATRDGLLV <mark>SWSHG</mark> ANNKSQTQEALKSGVMVLEADV	
Rbi_FAM151A	44	VTAGRSPSQGSQEKPSERTDGDMLEYLMNQGQINRSDGLLVTWYHRANKKSELAEALQSTAMVLEADV	
Cpi_FAM151A	37	LTLSRNPPQDSAPKPAFETDGDLLEYLLNLGSTDRKDGLLVTWYHSANKKSELAAALKSDAMVLEADV	
Asi_FAM151A	37	LTIGTEPRSDPAPKPAFSTAGDLLEYLLQLGSTPRKDGLHVTWYHAANRKSEMEDALKSEVMVLEADI	
Consensus	31	FTLGQSPRPGCEP-EAFSPDGDMLDYLLSLGQISRRDGLLVTWYHAANSKSEMTAALNSDVMVLEADV	
Cca_FAM151A	122	NVKGYNTANETNIAIMAHPPDIYSDNTLEEWLDAVLK-SKKGIKLDFKSINAVELSLDLLRVKNQ-TG	
Dre_FAM151A	124	NVQGHNTVNETNIPIMAHPPDIYSDNTLEEWLDAVLK-SKKGVKLDFKSISAVEPSLDLLRAKNQ-TG	
Hsa_FAM151A	98	NVEGLGTANETGVPIMAHPPTIYSDNTLEQWLDAVLGSSQKGIKLDFKNIKAVGPSLDLLRQLTEEGK	
Ptr_FAM151A	98	NVEGLGTANETGVPIMAHPPAIYSDNTLEQWLDAVLGSSQKGIKLDFKNIKAVGPSLDLLRRLTEEGK	
Pan_FAM151A	98	NVEGLGTANETGVPIMAHPPAIYSDNTLEQWLDAVLGSSQKGIKLDFKNIKAVGPSLDLLRRLTEEGK	
Mmu_FAM151A	102	TVEGFNTANETKVPIMAHPPAIYSDNTLQEWLFAVLASSQKGIKLDFKSLKAVGPSLDLLRQLTEAGR	
Eca_FAM151A	101	TVEGLNTANETGVPVMAHPPAVYSDNTLQHWLFAVLASSQKGIKLDFKSLKAVGPSLDLLRRLTEDGR	
Vpa_FAM151A	102	TVEGLGTANETGLPIMAHPPAIYSDNTLEQWLEKVLTSSQKGIKLDFKSIKAVGPSLDLLRRLTSEGR	
Rty_FAM151A	117	NIEGLNTQNETGTPIMAHPPSIYSDNTLQEWLDAVIR-SKKGIKLDFKSIDAVNPSLDILVKKYNEIH	
Xla_FAM151A	96	NVEGHLTLNETNLPIMAHPPAVYSDNTLQNWLDSVLK-SPKGIKLDFKSIQAVGPSLDILFAKASEVK	
Bbu_FAM151A	96	NVEGHLTPNETNIPIMAHPPAVYSDNTLQEWLNTVLQ-SSRGIKLDFKSIQAVGPSLDILLATSSRTP	
Rbi_FAM151A	112	TVEGLYTPNETQTPIMAHFPDVYSDNKFQEWLDAVLM-STKGVKLDFKTIKAVGPSLDILVKKSSQ	
Cpi_FAM151A	105	NILGHNIRNETDKPIMAHPPTIYSDNSFQEWLDVVLNSSSKGIKLDFKSIKAVGPSLDILLKKSSEMK	
Asi_FAM151A	105	NTEGNMEPNETTKPIMAHPPATYSDN <mark>SFQEWLDAVL</mark> NSSRKGIKLDFKSIKAVGPALEILLKKSQEVD	
Consensus	98	NVEGLNTANETGVPIMAHPPALYSDNTLUEWLDAVLKSSUKGIKLDFKSIKAVGPSLDLLRRKTEEGK	

Cca_FAM151A	188	INRPVWINADIL <mark>PGPNVPVFWPVINASEFFELIQLK</mark> FPDVT <mark>I</mark> SPGWKVLYLS-IFPNVTYTRSMVEEM	
Dre_FAM151A	190	INRPVWINADIL <mark>PGPNVP</mark> EFWPVVNA <mark>SEFFELIQLK</mark> FPDVTISPGWKVLYLS-IFPNVTYTRSMVEQM	
Hsa_FAM151A	166	VRRPIWINADILKGPNMLIS-TEVNATQFLALVQEKYPKATLSPGWTTFYMS-TSPNRTYTQAMVEKM	
Ptr_FAM151A	166	VRRPTWINADILKGPNMLIS-TEVNATQFLALVQEKYPKATLSPGWTTFYVS-TSPNRTYTQAMVEKM	
Pan_FAM151A	166	VRRPVWINADILKGPNMLIS-TEVNATQFLALVQEKYPKATLSPGWTTFYMS-TFPNRTYTRAMVEKM	
Mmu_FAM151A	170	IRRPVWINADILRGPNVPIS-IEINATQFLTLVQEKYPKATISPGFTTLYVP-QLPNSTYTQAMVETM	
Eca_FAM151A	169	VRRPVWINADILRGPNVPIS-VEVNATRFLALVQEKYPEATLSPGWTTLYEP-LLPSGTYTRAMVEEM	
Vpa_FAM151A	170	VRRPVWINADIQRGPNVPIP-IEINATRFLALAQEKYPEATLSTGWTTLYLP-MFPNSTYTRAMVEKM	
Rty_FAM151A	184	FNRPVWLNADILIGPNVPGFMQPVNASRFLCLIQQRFPNVILSPGWMSLYLP-MIATKPYTRKMVEEM	
Xla_FAM151A	163	INRPVWLNADILKGPNVNHE-IGVDATQFLNLVKNKFPDVTLSPGWVTLYLPPIISNRTYTREMIQQM	
Bbu_FAM151A	163	INRPVWLNADILAGPNVNHE-IGVNATQFLNLIQERFPDITISPGWVTLYLPPIISNRTYSSEMVKKM	
Rbi_FAM151A	177	ISRPVWINADILNGPNININ-IAVNATQFLDLVQRKFPNVTISPGWVTLYLP-FLSNKTYTWPMIWKM	
Cpi_FAM151A	173	LNRPLWLNADILMGPNVPIN-TAVNASLFLSLIQEKYPNCTLSLGWTTLYSF-LFPNKTYTQKMIQKM	
Asi_FAM151A	173	INRPVWLNADILEGPNVLVN-VSLNASTFLSLIQEKYPNCTLSPGWTTLYSP-LFPKQTYTRAMIQKM	
Consensus	166	INRPVWINADILKGPNVPIS-IEVNATQFLALVQEKYPDATLSPGWTTLYLP-IFPNRTYTRAMVEKM	
Cca_FAM151A	255	YTIVRHLPQ <mark>KI</mark> TFPVHALMAKNGWPHLSWLLSQSPRFSLTLWQGKENP-TVNDLLFIRDNSNPLRIYY	
Dre_FAM151A	257	YSTIRH <mark>LPQKITFPVHALMAKNGWPHL</mark> SWLLSQS <mark>SRYSLTLWQGKENP-TLN</mark> DLLFIRDNSNPQRIYY	
Hsa_FAM151A	232	HELVG <mark>GV</mark> PQRVTFPVR <mark>SS</mark> MVRAAWPHFSWLLSQSERYSLTLWQAASDP <mark>MS</mark> VEDLL <mark>YV</mark> RDN <mark>TAVHQ</mark> VYY	
Ptr_FAM151A	232	HELVG <mark>EVPQRVTFPVR</mark> SSMVR <mark>V</mark> AWPHFSWLLSQSERYSLTLWQAASDPMSVEDLLYVRDNTAVHQVYY	
Pan_FAM151A	232	HELVG <mark>VV</mark> PQRVTFPVR <mark>SS</mark> MVRAAWPHFSWLLSQSERYSLTLWQAASDPMSVEDLL <mark>YVRDN</mark> TAVHQVYY	
Mmu_FAM151A	236	QE <mark>LVG</mark> ALPQ <mark>KVTFPVRAVMT</mark> RAAWPHFSWLLSQSERYSLTLWQGASDPV <mark>S</mark> VEDLLFIRDNSAAHQIYY	
Eca_FAM151A	235	QG <mark>LVG</mark> VLPQRVTFPVRAVMARAAWPHFSWLL <mark>G</mark> QSERYSLTLWQGASDPV <mark>SVD</mark> DLL <mark>Y</mark> IRDNSATH <mark>QV</mark> YY	
Vpa_FAM151A	236	QELVGALPQKVTFPLYALMARSAWPHFSWLLGQSERYSLTLWQATSDSVSVDDLLYIRDNTAPHQVYY	
Rty_FAM151A	251	YD <mark>LV</mark> KG <mark>LS</mark> QRVTFPVRAV <mark>LLKP</mark> AWPHFSWLLSQS <mark>P</mark> RYSLTLWQG <mark>SIDPVTVEDLLF</mark> FRDNSNVEQIYY	
Xla_FAM151A	230	YNMVRDLPQKITYPARAVMIRSAWPHFNWLLQQSERYTITLWQGKSDPLTLEDLLFIRDSSNPEEIYY	
Bbu_FAM151A	230	YN <mark>LVKGLIQRITFPARAVL</mark> TCSAWQN <mark>FYWLLKQSDRYSLTLWQG</mark> SSDPLQLDDLLFIRDNSRPEEIYY	
Rbi_FAM151A	243	YT <mark>LVRDLPQRITFPVRAVMIKS</mark> AWQYFSWLLQQSDRYSLTLWQGETDPITVEDLLYVRDNSRAEEIYY	
Cpi_FAM151A	239	HSI <mark>VG</mark> ILPQRVTFPVRAVMVR <mark>L</mark> AWPHFSWLLAQS <mark>D</mark> RYSLTLWQGKMDPIRVEDLLFIRDNSRPEQIYY	
Asi_FAM151A	239	HD <mark>LIGE</mark> LPQKVTFPVRA <mark>I</mark> MVR <mark>L</mark> AWPHFSWLL <mark>N</mark> QSERYSLTLWQGKTDPVTVEDLLFIRDNSRAEQIYY	
Consensus	232	YELVGGLPQRVTFPVRAVMVRAAWPHFSWLLSQSERYSLTLWQGKSDPVTVEDLLFIRDNSAPHQIYY	
Cca_FAM151A	322	DIYEPVLSQFKEAAKLRNRPRRFYPGGDIIDYFRPVNNDGLNIQWDTVTDKDDLLYLLKDSQGGM	DUF2181
Dre_FAM151A	324	DIYEPVLSQFREAAKIKDRPRRFYPGGDIVDYFRPADSDGLNIQWDTVNDKDSLLSLLEDSPGGM	
Hsa_FAM151A	300	DI <mark>FEPILSQFKQLAL</mark> NA <mark>TRK</mark> PMYYTGGSLIPLLQLPGD <mark>DGLNVEWLVPD</mark> VQGSGKTATMTL-PDTEGM	
Ptr_FAM151A	300	DI <mark>FEPLLSQFKQLAL</mark> NATRK <mark>PMYYTGGSLT</mark> PLLQLPGD <mark>DGLNVEWLVPD</mark> VQGSSKTATITL-PDTEGM	
Pan_FAM151A	300	DI <mark>FEPLLSQFKQLAL</mark> NATRK <mark>PMYYTGGSLI</mark> PLLQLPGDDGLNVEWLVPDVQGSGQTATMTL-PDTEGM	
Mmu_FAM151A	304	DLF <mark>EPVLSQFKQLAL</mark> NT <mark>TRKR</mark> TYYTGGSLIPLLQQPKG <mark>DGLEVEW</mark> LVLEVNGSGRRAAITV-PDRE <mark>GM</mark>	
Eca_FAM151A	303	DLF <mark>EPVLSQFKQLA</mark> VNT <mark>TRKR</mark> SYYIGGSLVPLLQLPRGDGLSVEWLVPEVQGKGRTATVQV-PDREGM	
Vpa_FAM151A	304	DI <mark>FEPVLSQF</mark> RQ <mark>IA</mark> MNAS <mark>RK</mark> QN YYIGG SILIPFLQLPGDNSLSVEWLVPDIQGNGSTATVGL-PDREGM	
Rty_FAM151A	319	DIYEPVLSEFKQIALQTNRIRRFYPGGKLMDYFPHQNLDELQIKWFDIGSTELELMKLLQGNIGGM	
Xla_FAM151A	298	DI <mark>FEPLISEFK</mark> EAALNPNRKRLFYPGGSIQLYFQPEDSDGLLVNWYEADADILSEKEFF-SSNS <mark>G</mark> M	
Bbu_FAM151A	298	DIYDPLISEFKQQALNTSRRKLFYIGGSLQMYFHPDDHDGISVKWFDAEENISTVQNLL-ASSFGM	
Rbi_FAM151A	311	DIYDPVLSQFKEVALKPDRRRLFYIGGNLLQYFHPDDSDGLLVNWYVVKNKTALLLLL-TGRTGM	
Cpi_FAM151A	307	DIYDPVLAQFKEAALNSTRKRFYYPGGNLLDYFHPADSDELQIEWYGMDHYENRLETLSIL-KDKRGM	
Asi_FAM151A	307	DIYDPVLSQFKEMALKSTRKRAYYPGGDLLEYFHPSNGDGLSIEWYAMEHNESKTSTSSML-TDRSGM	
Consensus	300	DIYEPVLSQFKQLALNATRKRRYYTGGSLIPYFQPPDSDGLNVEWLVPDVQG-GLTATSLI-PDREGM	

Cca_FAM151A	387	LVIPVISSEGQPNIPIIQGSKPELPLQDCLELILASKKSWGIYIRIKSQNQUSLTUELLRQAYD
Dre_FAM151A	389	LVIPWKSSDGHPNIPIIDGSEMPLKDCLDLILASTKPWGIYLQIKSQNQLSLSLELLRQAYD
Hsa_FAM151A	367	ILLNTGLEGTVAENPVPIVHTPS-GNILTLESCLQQLATHPGHWGIHLQIAEPAALRPSLALLARLSS
Ptr_FAM151A	367	ILLNTGLEGTVAENPVPIVHTPS-GSILTLESCLQQLATHPGHWGIHLQIAEPAALRPSLALLARLSS
Pan_FAM151A	367	ILLNTGLEGTVAENPVPIVHAPS-GSILTLESCLQQLATRPGHWGIHLQIAEPAALRPSLALLAHLSS
Mmu_FAM151A	371	ILLDIGLQEPEAGNPVPILHTPG-GPALTLESCLLRLAVHPRRWGIHVNIVEPEALRPSLATLAHLST
Eca_FAM151A	370	ILLNIGLRGPAAGDPVPIVRVPG-GPALTLESCLLQLATHPGRWGIHLHIAEPTALRPSLAMLAHLST
Vpa_FAM151A	371	ILLNVGLQEPAAENPMPFVRAPD-GRALTLESCLQQLATHPRRWGVHVHIAEPTALRPTLAMLAHLSA
Rty_FAM151A	385	LILNVKTKANDAIPVVVGAEKGLEFPLESALNWIATSSKPWGIYLKIKSQEALAPTLYLLERVYT
Xla_FAM151A	363	ITLNIRVKDSSSSPQVAFPKSPTQFSLEDYMNVILANPNPWGVFLKIETQDALNKTLKVLSRMHD
Bbu_FAM151A	363	LTLHVEVQSRSPVVIFAKSSAAFPLEDLLKLINSNKNLWGVFLKPKDHVSLNETLHALKRIND
Rbi_FAM151A	375	LALAIGAE-VVNGTLIPVVRLPQSAADLPLEHCLDLIYTCQHAWGVFLQIETEAALPPALHLISKIQG
Cpi_FAM151A	374	TALDIALQNSTIGNLIPVALSPSAGLPLEQCLVTVSRDLNPWGIYLNITEPCALRPTLELLSKLYA
Asi_FAM151A	374	IVLDVAVQDGISGNLIPVASTGTPLEQCLETIYRSQNPWGIFLNVTEPDALHPTLELLSTVYA
Consensus	366	ILLNVGLEGGVAGNPIPIVH-PG-GPALPLESCLQQIATHPGPWGIHLQIAEPAALRPTLALLARLSD
Cca_FAM151A	451	RDLLHHPTWVNMDIAHGTFYIQDYVTGEEFLRTIDQIFPYVTLAPGWPKEVLDEGYKPELVEDMVQLF
Dre_FAM151A	451	IDLLHHPTWVNMDISHGAVHIQGYMTGEEFLRTVDRIFPHVTLAPSWPKEALVEGYTPEMLEPMVQLF
Hsa_FAM151A	434	LGLLHWPVWVGAKISHGSFSVPGHVAGRELLTAVAEVFPHVTVAPGWPEEVLGSGYREQLLTDMLELC
Ptr_FAM151A	434	LGLLHWPVWVGAKISHGSFSVPGHVAGRELLTAVAEVFPHVTVAPGWPEEVLGSGYREQLLTDMLELC
Pan_FAM151A	434	LGLLHWPVWVGAKISHRSFSVPGHVAGRELLTAVAEVFPYVTVAPGWPEEVLGSGYREHLLTDMLELC
Mmu_FAM151A	438	LGHLPWPVWVGSTVSHGSFVVPGHIAGRELLTAVAEVFPHVTVAPGWPEEMLDSGYQEQMVTDMLELC
Eca_FAM151A	437	LGHLPWPVWVGATVSHGSFVVPGHVAGRELLTAVAEVFPHVTVAPGWPEEVLGSGYREQLLTDMLELC
Vpa_FAM151A	438	LGHLSRPVWVGATISHGSFVVPGYMAGKEFLTAMAEVFPHVTVAPRWPEEVLGSGYREQLLTDMLDLC
Rty_FAM151A	450	AYLLLKPVWINMDLSYGSFSTHGYIEGKQFIKTVNEIFPFVTIAPSWPKEVLTHGYTQPLVEDMLNLC
Xla_FAM151A	428	HKALNVPVWISMEVSYGNFSMEGYIQGIDFLNTINDIFPYVTIAPSWPAPVLGSGYTEILVQDMLMLC
Bbu_FAM151A	426	QKSLYLPVWIGMDVSYKSFSTPGYIYGEDFIGSINAIFSAVTIAPGWPIERLDGGYTELMVQDMLQLC
Rbi_FAM151A	442	RNLLWHPIWISMAVSYGRFSAPGYMPGRDFLATINAIFPFVTIAPSWPKESLAGGYTDPLIEDMLSLC
Cpi_FAM151A	440	QNLLWNPIWISMALSFGSFETPGYMQGEEFLTAINSIFPYVTIAPGWPREVITAGYTDPLIDDMLTLC
Asi_FAM151A	437	KNLLWSPVWVSLAVSYRSFDTPGYMHGEDFLRAINTIFPHVTIAPRWPREVLTDGYTDLLIEDMLTLC
Consensus	432	LGLLHWPVWVGMDISHGSFSVPGYVAGREFLTAVAEIFPHVTVAPGWPEEVLGSGYTEQLLTDMLELC
Cca_FAM151A	519	QGAWQDVSLQLHAETLYRTVTGC-RSLLHAQSRFSMTLEHRAEDRDLNTWTASLMAIIRALNRQRSFYN
Dre_FAM151A	519	HRAWQDVSLQLQAEALDRSETWRLVLVQPRFSLTVEHQTENKDINAGIESLMAIRAANRQRSFYN
Hsa_FAM151A	502	QGLWQPVSFQMQAMLLGHSTAGAIGRLLASSPRATVTVEHNPAGGDYASVRTALLAARAVDRTRVYYR
Ptr_FAM151A	502	QGLWQPVSFQMQAMLLGHSTAGAIARLLASSPRATVTVEHNPAGGDYASVRTALLAARAVDRTRVYYR
Pan_FAM151A	502	QGLWQPVSFQMQAILLGHSTAGAIARLLASSPRATVTVEHSPAGGDYASVRTALLAARAVDRTRVYYR
Mmu_FAM151A	506	QGLRQPVSFQLQAGPLSQSPANTVARLLASSPRATVTVYHSTAGNSHVDLWAGLWAARAVDRTRVYYR
Eca_FAM151A	505	QGLWQPVSFQLQAGPLGWSRAAAVARLLAASARATVTVEHSPAGGNYASVRAVLLAARAVDRTRVYYR
Vpa_FAM151A	506	QGLWQPVSFQLQAGPLGQSTAGVVDRLLAASPRATVTVEHNPGRGNYASVRGVLLAARAVDKTRVYYK
Rty_FAM151A	518	RGLWQAVSFQLQAIALGKSWKAT-TRLLQTSPTYTLTVEHLHEQGSYLDGFQGLINIRTYSTRRIYYR
Xla_FAM151A	496	EGLWQEVSFQLNAVALGKEWLSA-VKLLQVSPMYSLTIEHNSKQGIFLDGYAGLMAMRSHEENRIYYR
Bbu_FAM151A	494	EGVMQEVSFQLQAVILGKAWLNT-VNLMKVSRMYTLTVEHTAEQGTFMDGYHGLMAIRTHTENGVYYK
Rbi_FAM151A	510	QGLWQEVSFQLQAAALADTWKTA-VGLLEVSPSYTLTVEHGHAQGSFWDGYQGLMSVRTHTKERVYYS
Cpi_FAM151A	508	KDLWQQVSFQLEAVPLSRSWLAT-TKLLEISPSYTITVQHSHSEGSYCDGFPGLRSIRTHTQKGVYYK
Asi_FAM151A	505	KGLWQHVSFQLEAVLLSKSWLPT-AKLLEASPSYTVTVQHSSSEGSDWDGFPGLQSISTQAQKRVYYT
Consensus	500	QGLWQPVSFQLQAVALGKSWAGA-ARLLAASPRATVTVEHSPAGGDYADGRAGLMATRAVDRTRVYYR

Cca_FAM151A	586	MPNM-YREHIAN-LPENQDHTALTKTLQNDS-
Dre_FAM151A	584	IPKM-YREHITD-LSVRK
Hsa_FAM151A	570	LPQG-YHKDLLAHVGRN
Ptr_FAM151A	570	LPQG-YHKDLLADVGRN
Pan_FAM151A	570	LPQG-HRKDLLADVGRN
Mmu_FAM151A	574	ISQE-YWKDLQADVSSNRPSSRIGPSSVEGFPGESR
Eca_FAM151A	573	LPQS-YREDLLADVGRN
Vpa_FAM151A	574	LPQG-FREDLLADVGRN
Rty_FAM151A	585	LPQD-YRNSFHDDVFTS
Xla_FAM151A	563	LQQD-YLNMFLENVFTS
Bbu_FAM151A	561	LPPD-YYYSLMTSIYST
Rbi_FAM151A	577	LPKD-YRQAFMMNIFTS
Cpi_FAM151A	575	IPRQ-CRNALMADVLTS
Asi_FAM151A	572	KAIQKCFHGRCLTT
Consensus	567	LPQG-YREDLLADVGRN

Distant Orthologs

Lva_FAM151A	1	MM	TMEM
Spi_FAM151A	1	MTVSMKTSLHKRVRVKVTRTFDPLLHVVLERFNVFSQCRFLKMCMTTSVVV	
Lan_FAM151A	1	MPCRTRGDISGAICCLLMAVDIRKRRYASTCNRKRIFCCVGVAL	
Scl_FAM151A	1	EKKHR <mark>I</mark> IKYSIAAIAILVA <mark>VGEC</mark> VGIIY	
Cin_FAM151A	1	QRYFKIIRYALAAACLLITIGFVICILY	
Hsa_FAM151A	1	LSKNQVKWVFAGITCVSVVV	
Bfl_FAM151A	1	RHQKKVTRYVTIAAVIGVVL	
Consensus	1	LRY-KL-RYAIGFCVGVVV	
Lva_FAM151A	3	LIKLCFACSILVISISHTDGA	
Spi_FAM151A	52	LATHLGLIYLVVSVPCKLI	
Lan_FAM151A	45	LLLVIC <mark>IILVAA</mark> F <mark>VV</mark> VKKRIVQSGQPFQSGQPF	
Scl_FAM151A	32	TSTVLSTTAVTQNPVP	
Cin_FAM151A	40	AVIDYYVTPNSVRQVESTTMIDVATTQVLPTEGFTTDVPFTNATTPAATTSIDMESIY	
Hsa_FAM151A	27	IAAIVLAITLRRPGCELEA	
Bfl_FAM151A	31	VAA <mark>I</mark> ALMVYFLVPPVTIAE	
Consensus	21	LCIILVAVYVVTPGA	
Lva_FAM151A	24	TH <mark>T</mark> EDNVLDFFPSTNGDGLNVIWAHGVNSIASLNESLADD-TMMLETDIILRGIGTENQTNIPV	DUF2181
Spi_FAM151A	73	HHAQDDIIKFFKVNDGIDVTWLHAVNSPELLEQGLSGD-TMMLEADVLIRNNIADGTPV	
Lan_FAM151A	72	ASMDTLQFENVTDGLAVTWYNGDMSKKQMEDVLSSD-AMMLEADVTLCGSPSGQD	
Scl_FAM151A	68	EITGGDILDYFVDANDDGLYVSFVHGANSISEMEKALSDDSIDMLEADITLRYYGLENQTTEPI	
Cin_FAM151A	98	LITGGGMFDYFKDKNNDGLNIKFSHATNGYTEVDEAFAAN-KNALEADITLQIDENHQQTEIPI	
Hsa_FAM151A	46	CSPDADMLDYLLSLGQISRRDALEVTWYHAANSKKAMTAALNSN-ITVLEADVNVEGLGTANETGVPI	
Bfl_FAM151A	50	FPTDCSPLEYFKFDRQDAIQVTWSHGANSKAQLAKALASD-VHMLEADILLRCQCTHAQTDIPV	
Consensus	36	THTGGDILDYFKDTNNDGLNVTWYHGANSKAQLEEALASD-TMMLEADITLRGIGTENQTGIPV	
Lva_FAM151A	87	HAHPPLTDSDLTLEHFLQVTTQHTDKGMKLDFKYLEALEPSMILIGDHESELKAPLWINADI	
Spi_FAM151A	131	MAHPPAVDSNLTLQTFLEKTPTSPNKGIKLDFKTIQVVEPSLKMMKNVTLGQQVTNPIWLNADI	
Lan_FAM151A	126	ETTVPSVARDNTLQEWMEAILDANLNGRKKGVKLNMKHDKVIGPTLKVLQAMKDSIVIPVWIHADI	
Scl_FAM151A	132	MAHPPAFN <mark>SDNTL</mark> AN <mark>MFE</mark> NVIPSK <mark>KGIKMDIK</mark> VEEVIPHALKELQLHRSKLMQPVWINADV	
Cin_FAM151A	161	MAHPPAVR <mark>SDYTL</mark> DEWLDVTIASDKAIKLDIKITEVIPYALEILRLHGPTLHQPVWINADV	
Hsa_FAM151A	113	MAHPPTIYSDNTLEQWLDAVLGSSQKGIKLDFKNIKAVGPSLDLLRQLTEEGKVRRPIWINADI	
Bfl_FAM151A	113	MAHPPQTDSDNTFQEWLDAALES-SKGLKLDFKSTGSVAPSLRILRNKSNLINRPVWLNADT	
Consensus	99	MAHPPAVDSDNTLQEWLEATLQSSDKGIKLDFKYIEVVEPSLKLLRNHESKLKQPVWINADI	

Lva_FAM151A	149	VIGPNSP-RDPVPPQPFIDIANRYFDKTTLSLGFTTAWGP-MMADKLYTWTMIFDNLYYSYPLDPQ	
Spi_FAM151A	195	LPGPCYD-KVCVPVDHERFLSLCKSYYPNATLSISWKTGENM-TASKNYYNWSQVLPMGKL-VSQIAQ	
Lan_FAM151A	192	LLGPGTN-KTMINPMQLFSQIDQIYPAVTLSVAWASDSSQTSYTQSMMDEMYSL-IKNLKQ	
Scl_FAM151A	193	IQGPNTL-STPIDGDYFVHNVNQYFPNVTLSLGWTTGYRI-ALENEEYSWESMDDMLRL-ASSTNQ	
Cin_FAM151A	222	VKGPNTN-SDPIDSNIFLPEVNSKFPNVTLSLGWTTGYRNVGPPNEKYSWDAMEKMLSL-SRPLNQ	
Hsa FAM151A	177	IKGPNMLISTEVNATQFLALVQEKYPKATLSPGWTTFYMS-TSPNRTYTQAMVEKMHEL-VGGVPQ	
Bfl FAM151A	174	IRGPNIIV-NPGVNAREFIDTVNRIFPECTLSIGWTTCFYY-DRENEGYTRQMVEEMHSY-CGDLTQ	
Consensus	161	LKGPNTN-STPVDPQQFLDLVNRYFPNVTLSLGWTTGYRP-TMENELYTWSMVEDMLSL-VSLLPQ	
Lva_FAM151A	213	PVTFPIRAVWCKTSWPKFVWLLGLRDSFSITVWSSGSDIVDVGGLVDLRTHGDTRRIFYDLPDL	
Spi_FAM151A	260	PITFPFRANLVQRSWDQLQWLLDLSETFTVTIWSSTTDKVDPLDLVALRNNVSRERIYYDLPPD	
Lan_FAM151A	251	PVSITVRAALVKNAWPNLKWLLSQNSNFTLTVWNPSGVTDKEGTDLYDLLYVRNNWYIEKIFYDLPGT	
Scl_FAM151A	256	RI <mark>TFPIR</mark> AALARQ <mark>S</mark> WYK <mark>FLWLLEQ</mark> DKRF <mark>SLTV</mark> WSASVDPVSLEDKVYIRDNYDTSRVFYDTDPN	
Cin_FAM151A	286	LITYPARAALLRQSWDRFLWLLEQSNSYTLTIWSSTTDVVSVEDMVFVRDNFDISRIFYDAEDA	
Hsa_FAM151A	241	RVTFPVRSSMVRAAWPHFSWLLSQSERYSLTLWQAASDPMSVEDLLYVRDNTAVHQVYYDIFEP	
Bfl_FAM151A	237	PVTFPIRNSLLSLNESYLKWILLEQSDTYTLTLSEGQTS-IDPVDLLKIRNDFDWSRVFYDITTE	
Consensus	224	PVTFPIRAALVRQSWPKFKWLLEQSDSFTLTVWSSTTDPVDVEDLVYVRNNFDTSRIFYDLPDL	
Lva_FAM151A	277	QKEAFLTALDDPERTPSPPLDTAWDREQWIAFE-NQDGRNFA	DUF2181
Spi_FAM151A	324	QEKARKDALKSSNDIFKKKEAFAWKASAVKDCQEVVVGQNSV	
Lan_FAM151A	319	KFKEFQELSVTAGSPLNFFDVKDRDAIDITWAHAANSIADMEMALKS-DVM	
Scl_FAM151A	320	FVEDIRMEVEGDRTVEKVFYTGGNALDFFRIPGRDAMKVTWAHRANNKADLEAALKDESIM	
Cin_FAM151A	350	LTDPLI-EAINANIYPKNFYTGGNVLDCFKIPNREALKVTWEHRANTIDILQPALNDSNLM	
Hsa_FAM151A	305	LLSQEKQLALN-ATRKPMYY <mark>TGGS</mark> LIPLLQLPGDDGLNVEWLVPDVQGSGKTATMTLPDTEGMI	
Bfl_FAM151A	300	KATELLRMTE <mark>TGGS</mark> LVNFFQASYKTYG <mark>RDGLSITWA</mark> DGVNSREAIEEAMGAYREVT	
Consensus	288	QKEAFL-ALNTTPYTGGS-L-FFIPGRDALDVTWAHRANADLEEALDG-NVM	
Lva_FAM151A	318	FLSTEGLGISGNASRAAIVHSKRQHMPGTDGPMAVRTRVQFVHRYDSTSTATVDIFIRSKNLVDDAET	
Spi_FAM151A	366	MYKV-SNGAFSEFMGNISFINLDEA	
Lan_FAM151A	369	MLEADIL-LRGDSDNTFQN	
Scl_FAM151A	381	MLEADVR-TRPIPL-TDQTLEE	
Cin_FAM151A	410	MLEADVR-LYGLNYDYTLEA	
Hsa_FAM151A	368	LLNTGLE-GPSG-NILTLES	
Bfl_FAM151A	356	MLEADVAGS-DVITLEE	
Consensus	336	MLEADVLGRSLDNTLEA	
Lva_FAM151A	386	RENILAGNTDPSCLKYSISSDCKV-AFNGTHFSESLPAAECYNVQILDHLNGSMQVDFIVKTCS	
Spi_FAM151A	404	SNSG <mark>S</mark> VTIKLHVKDETGVAVLSGQIVSLLLHSNGDFQF	
Lan_FAM151A	405	WFTNVVQTKKGLKLDFKSIGAVEPCLQILNSSRGSLRQPVWLNADILVGPNAAGS	
Scl_FAM151A	414	WLQRVS-NVTTR <mark>GI</mark> KLDVKTTDTLEKAFTIIAKESPVVPVWLNSDVLRGPNSVS	
Cin_FAM151A	448	WLQEILSRNVSKGLK <mark>LDFKSLG</mark> ALKASLDVLGKMKSELTVPIWLNSDILMGPNSIT	
Hsa_FAM151A	398	CLQQLATHPGHWGIHLQIAEPAALRPSLALLARLSSLGLLHWPVWVGAKISHGSFSVP	
Bfl_FAM151A	388	WLDVAKMRQQGIMLEFHSVGSVVPALEVFQRRSEDLRSPVMLKAKIP	
Consensus	368	WLQILA-NTGSKGIKLDFKSDGAVEPALGILASESLRVPVWLNVDILNGPNSVS	
Lva_FAM151A	449	DALEDDPNAEQVIMSFPEKEMDEGQEYYVIVMKTGSGKDVILEDLHV-EGSQDPEVLYTTPTYTTD	
Spi_FAM151A	442	SVAESN	
Lan_FAM151A	460	K <mark>PV</mark> DAAE <mark>FI</mark> SVIQQN <mark>FPQATL</mark> SIGWKTAWNNSRTN <mark>EGYTQAMVEEM</mark> AGICNNLTQPITFP <mark>VRA-</mark> I	
Scl_FAM151A	467	IPVNATIFFSKAEEIFPH <mark>ATL</mark> SPGWTTFYNVIGENEGYSQAMVEEMYSYCKSSRQAITFPVRA-S	
Cin_FAM151A	504	RPVNATEFFRLTQS <mark>VFP</mark> ESTL <mark>SPGW</mark> TTTYRQIGEN DIYT RAMVEEMYSHCSSVRSPITFPVRA-S	
Hsa_FAM151A	456	GHVAGRELLTAVAEVFPHVTVAPGWPEEVLGSGYREQLLTDMLELCQGLMQPVSFQMQA-M	
Bfl_FAM151A	435	GLFSKETFIDPIVNMFPHVSIVFAMRPVSPLEGYSRAQVEQISRMCANLTQVVTFSVDV-R	
Consensus	421	GPVNATEFISQVQEVFPHATLSPGWTTYIVENEGYTQAMVEEMLSVCEGLTQPITFPVRA-S	

Lva_FAM151A	514	SRC <mark>GS</mark> LLEATC <mark>WFSLVIP</mark> VEVHFAVALPGLAGCSSLRCCFRIISLFMLAFSHS
Spi_FAM151A	448	MKN <mark>GSV</mark> KSENGEFSFRISEHSPVEVHFAVALPGLAGCSSLRCCFRIISLFMLAFSHS
Lan_FAM151A	524	AVRR <mark>S</mark> WP-Q <mark>T</mark> K <mark>WILL</mark> DQ <mark>S</mark> LS <mark>YSLTIW</mark> TTAADDLKQA <mark>D</mark> MQ
Scl_FAM151A	531	LTAQ <mark>SV</mark> T-ELQWIIKK <mark>S</mark> NRYTIIIVWHSGSENVPIEDLIKIHDGFTKEQVYYDIPEDMMNEFVQA
Cin_FAM151A	568	LTRPSIP-NICWILLAKSNRYSLIVWHSTSEKVITEELLEIYNSEGTDKVYFDLPEEILDELIKA
Hsa_FAM151A	516	LLGHSTAGAIGRILLASSPRATV-TVEHNPAGGDYAS-VRTALLAARAVDRTRVYYRLPQGYHKDLLAH
Bfl_FAM151A	495	QVRGSWD-NISWILINQSALYNIYIWAGWPEQETYSVDVTDLVFVRNNFDHTRVFYDILIPRVMKEFKKA
Consensus	482	LVRGSVP-ALGWLLS-RYSLTIWEHIPEEAVDALPGLAGFSSLRVYFRLISLFMLEFSHA
Lva_FAM151A	567	0LS
Lva_FAM151A Spi_FAM151A	567 505	DLS DLS
Lva_FAM151A Spi_FAM151A Lan_FAM151A	567 505 561	ILS ILS
Lva_FAM151A Spi_FAM151A Lan_FAM151A Scl_FAM151A	567 505 561 594	ILS ILS ESR
Lva_FAM151A Spi_FAM151A Lan_FAM151A Scl_FAM151A Cin_FAM151A	567 505 561 594 631	ILS ILS IESR TENQKNLYS
Lva_FAM151A Spi_FAM151A Lan_FAM151A Scl_FAM151A Cin_FAM151A Hsa_FAM151A	567 505 561 594 631 582	LS LS ESR TENQKNLYS VGRN
Lva_FAM151A Spi_FAM151A Lan_FAM151A Scl_FAM151A Cin_FAM151A Hsa_FAM151A Bfl_FAM151A	567 505 561 594 631 582 562	LS LS PESR IENQKNLYS VGRN IEET
Lva_FAM151A Spi_FAM151A Lan_FAM151A Scl_FAM151A Cin_FAM151A Hsa_FAM151A Bfl_FAM151A Consensus	567 505 561 594 631 582 562 540	LS LS ESR IENQKNLYS VGRN IEET LES

Alignment of FAM151A and FAM151B Orthologs

Dre_FAM151B	1		TMEM
Bbu_FAM151B	1	MKRRLQCGRSWLRI-ACCTGTVLVIYHLVLI	
Hsa_FAM151B	1		
Mmu_FAM151B	1		
Dre_FAM151A	1	MEVKEEKSCSIGEGEEAEGKEAKTVLGIFTREQFIMLCVGLGLIAL-LLIITLTSVFVIAKSD	
Bbu_FAM151A	1	TLGQ	
Hsa_FAM151A	1	MVCREQLSKNQVKWVFAGITCVSVVVIAAIVLAI	
Mmu_FAM151A	1	MSCKKWCSSSQAKWILAGSVTVTLVLAISLILGL	
Consensus	1	CVTL	
Dre_FAM151B	1	MSEQTLEYFLNKGTIRRKDAADIEWYHAANSKSKLMEALRGSAQMIEADVLLRGAD	DUF2181
Bbu_FAM151B	40	PPCLAMDKSRDPWSESILDYFLKKDLIKARDGVETIWEHAANSKEKLRQALRSDVHMTEADVLLRGAG	
Hsa_FAM151B	1	MAASAGGPGSWSENTILEYFLRNSQITAEDGAEITWYHAANHKAQTNEALKSTAHMIEADVLLPSDG	
Mmu_FAM151B	1	MAACAGGPGSWSENTILKYFLRNNQITAEDGAEILWSHAANHKSQMNEALKSAAHMIEADVLLPSDG	
Dre_FAM151A	63	ASV-DVDME <mark>P</mark> FPSDGD <mark>MLD</mark> FLLQT <mark>GETEEKDGLYATWYHAANSK</mark> SEMSK <mark>AL</mark> NSDVMILEADVNVQGHN	
Bbu_FAM151A	35	PRK-KDSKPALSSGGD <mark>MLDYL</mark> KLQ <mark>G</mark> ETAT <mark>RDGLLVSWSHGANNK</mark> SQTQE <mark>AL</mark> KSGVMVLEADVNVEGHL	
Hsa_FAM151A	38	RPG-CELE-ACSPDADMLDYLLSLGQISRRDALEVTWYHAANSKKAMTAALNSNITVLEADVNVEGLG	
Mmu_FAM151A	41	QP <mark>G</mark> -CENDAICGPDAD <mark>MLDYLMGMGQI</mark> SH <mark>RDGLLVTWYHAANSK</mark> KEMAA <mark>AL</mark> NSDVMVLEADVTVEGFN	
Consensus	5	G-AEDK-PGSWSEDMLDYFLRKGQITARDGLEITWYHAANSKSQMNEALKSDVHMIEADVLLEGAG	
Dre_FAM151B	57	PEE <mark>PIMAHPP</mark> AKD <mark>SDITLQDWL</mark> KE <mark>VVKT</mark> -D <mark>KGIKLDFKSLAAV</mark> SQ <mark>SM</mark> SLLEEIRDQLKGPVW	
Bbu_FAM151B	108	REPIMAHPPYTD <mark>SDINLQDWL</mark> SEVSA <mark>S-SKGIKLDFKSLEAVLPSM</mark> KILDAMKDNLHQPVW	
Hsa_FAM151B	67	SEHSQPIMAHPPETNSDNTLQEWLTEVMKS-NKGIKLDFKSLAVVEPSMMLLENVKRHLKRPVW	
Mmu_FAM151B	67	SEHGQPIMAHPPETSSDNTLQEWLAEVVKS-NKGIKLDFKSLAAVRASMLFLDNMKQHLQRPVW	
Dre_FAM151A	130	TVNETNIPIMAHPPDIYSDNTLEEWLDAVLKS-KKGVKLDFKSISAVEPSLDLLRAKNQ-TGINRPVW	
Bbu_FAM151A	102	TPNETNIPIMAHPPAVYSDNTLQEWLNTVLQS-SRGIKLDFKSIQAVGPSLDILLATSSRTPINRPVW	
Hsa_FAM151A	104	TANETGVPIMAHPPTIYSDNTLEQWLDAVLGSSQKGIKLDFKNIKAVGPSLDLLRQLTEEGKVRRPIW	
Mmu_FAM151A	108	TANETKVPIMAHPPAI <mark>ySDNTLQEWL</mark> EAVLA <mark>S</mark> SQKGIKLDFKSLKAVGPS <mark>L</mark> DLLRQLTEAGRIRRPVW	
Consensus	69	TETGEPIMAHPPATYSDNTLQEWLDEVLKS-SKGIKLDFKSLAAVGPSMDLLRAMKDHLKRPVW	

FAM151A

Dre_FAM151B	118	INADILPGPGGTATPVDPHVFLQEVAQRSENDVLSLGWTTGWTAN-VDNPGYSWEMVHQMEELCRP	
Bbu_FAM151B	169	INADILPGPGGSVTVDAREFLQIVTSFFPNVTLSLGWTTAWHPD-KSNEGYSWEMVREMEKICKN	
Hsa_FAM151B	130	INADILPGPNGNSKVIDAKPFLDTVISFFPDVTFSLGWTTGWHPE-KVNEGYSWTMVKEMEYICNE	
Mmu_FAM151B	130	INADILPGPNGSSKVVDAKAFLDTVTSFFPDVTFSLGWTTGWHPE-KVNEGVSWSMVKEMDYICSE	
Dre_FAM151A	196	INADILPGPNVPEFWPVVNASEFFELIQLKFPDVTISPGWKVLYLSI-FPNVTYTRSMVEQMYSTIRH	
Bbu_FAM151A	169	LNADILAGPNVNHEI-GVNATQFLNLIQERFPDITISPGWVTLYLPPIISNRTYSSEMVKKMYNLVKG	
Hsa_FAM151A	172	INADILKGPNMLIST-EVNATQFLALVQEKYPKATLSPGWTTFYMST-SPNRTYTQAMVEKMHELVGG	
Mmu_FAM151A	176	INADILRGPNVPISI-EINATQFLTLVQEKYPKATISPGFTTLYVPQ-LPNSTYTQAMVETMQELVGA	
Consensus	132	INADILPGPNGSSKVVDATQFLQLVQSFFPDVTLSLGWTTGWHPE-KPNEGYSWEMVKEMEELCRE	
Dre_FAM151B	183	LKQPVTFPVRASLLPMSFPQFQWLLEQSDRSEILH	
Bbu_FAM151B	233	LSQLVTFPVRAALVRQSWPQLQWLLQTSDRYSLTVWSGKDDIYPVEDLLYTRQHSGADQIFYDVFEPQ	
Hsa_FAM151B	195	LSQPVTFPVRAALVRQSCSQLLWLLKKSNRYSLTIWTGKNDNYSVEDLLYTRDHFDKKQVFYDILEPQ	
Mmu_FAM151B	195	LTQPVTFPVRAALVRQSCPQLLWLLTKSNRYSLTVWTGKDDIYSTEDLLYTRDYFNKTQVFYDISEPQ	
Dre_FAM151A	263	LPQKITFPVHALMAKNGWPHLSWLLSQSSRYSLTLWQGKENP-TLNDLLFTRDNSNPQRTYYDIYEPV	
Bbu_FAM151A	236	LTQRITFPARAVLTCSAWQNFYWLLKQSDRYSLTLWQGSSDPLQLDDLLFTRDNSRPEETYYDIYDPL	
Hsa_FAM151A	238	VPQRVTFPVRSSMVRAAWPHFSWLLSQSERYSLTLWQAASDPMSVEDLLYVRDNTAVHQVYYDIFEPL	
Mmu_FAM151A	242	LPQKVTFPVRAVMTRAAWPHFSWLLSQSERYSLTLWQGASDPVSVEDLLFTRDNSAAHQTYYDLFEPV	
Consensus	197	LPQPVTFPVRAALVRQSWPQFSWLLSQSDRYSLTLWQGKSDPYSVEDLLYIRDNSNAHQIYYDIFEPQ	
Dre_FAM151B	218		DUF2181
Bbu_FAM151B	301	NGEL <mark>KQA</mark> VKRKQQAK	
Hsa_FAM151B	263	NHE <mark>FKQA</mark> IGIKVNL	
Mmu_FAM151B	263	NHE <mark>FKQA</mark> IGIRGHSLRI	
Dre_FAM151A	330	LSQFREAAKIKDRPRRFYPGGDIVDYFRPADSDGLNIQWDTVNDKDSLLSLLEDSPGGMLVIPVKS	
Bbu_FAM151A	304	LSEFKQQALNTSRRKLFYTGGSLQMYFHPDDHDGISVKWFDAEENISTVQNLLASSFGMLTLHVEV	
Hsa_FAM151A	306	LSQFKQLALNATRKPMYYTGGSLIPLLQLPGDDGLNVEWLVPDVQGSGKTATMTLPDTEGMILLNTGL	
Mmu_FAM151A	310	LSQFKQLALNTTRKRTYYTGGSLIPLLQQPKGDGLEVEWLVLEVNGSGRRAAITVPDREGMILLDIGL	
Consensus	265	LSEFKQAALIKTRK	
Dre_FAM151B	218		
Bbu_FAM151B	316		
Hsa_FAM151B	277		
Mmu_FAM151B	280		
Dre_FAM151A	396	SDGHPNIPIIDGSEMPLKDCLDLILASTKPWGIYLQIKSQNQLSLSLELLRQAYDIDLLHHPT	
Bbu_FAM151A	370	QSRSPVV-IFAKSSAAFPLEDLLKLINSNKNLWGVFLKPKDHVSLNETLHALKRLNDQKSLYLPV	
Hsa_FAM151A	374	EGTVAENPVPIVHTPSGNILTLESCLQQLATHPGHWGIHLQIAEPAALRPSLALLARLSSLGLLHWPV	
Mmu_FAM151A	378	QEPEAGNPVPILHTPGGPALTLESCLLRLAVHPRRWGIHVNIVEPEALRPSLATLAHLSTLGHLPWPV	
Consensus	279		
Dre_FAM151B	218		
Bbu_FAM151B	316		
Hsa_FAM151B	277		
Mmu_FAM151B	280		
Dre_FAM151A	459	WVNMDISHGAVHIQGYMTGEEFLRTVDRIFPHVTLAPSWPKEALVEGYTPEMLEPMVQLFHRAWQDVS	
Bbu_FAM151A	434	WIGMDVSYKSFSTPGYIYGEDFIGSINAIFSAVTIAPGWPIERLDGGYTELMVQDMLQLCEGVMQEVS	
Hsa_FAM151A	442	WVGAKISHGSFSVPGHVAGRELLTAVAEVFPHVTVAPGWPEEVLGSGYREQLLTDMLELCQGLWQPVS	
Mmu_FAM151A	446	WVGSTVSHGSFVVPGHIAGRELLTAVAEVFPHVTVAPGWPEEMLDSGYQEQMVTDMLELCQGLRQPVS	
Consensus	279		

Dre_FAM151B	218	
Bbu_FAM151B	316	
Hsa_FAM151B	277	
Mmu_FAM151B	280	
Dre_FAM151A	527	$\verb"LQLQAEALDRSETWRLVLVQPRFSLTVEHQTENKDINAGIESLMAIRAANRQRSFYNIPKMYREH"$
Bbu_FAM151A	502	${\tt FQLQAVILGKAWLNTVN-LMKVSRMYTLTVEHTAEQGTFMDGYHGLMAIRTHTENGVYYKLPPDYYYS}$
Hsa_FAM151A	510	${\tt FQMQAMLLGHSTAGAIGRLLASSPRATVTVEHNPAGGDYASVRTALLAARAVDRTRVYYRLPQGYHKD}$
Mmu_FAM151A	514	${\tt FQLQAGPLSQSPANTVARLLASSPRATVTVY} {\tt hSTAGNSHVDLWAGLWAARAVDRTRVYYRISQEYWKD}$
Consensus	279	
Dre_FAM151B	218	
Bbu_FAM151B	316	
Hsa_FAM151B	277	
Mmu_FAM151B	280	
Dre_FAM151A	592	ITDLSVRK
Bbu_FAM151A	569	LMTSIYST
Hsa_FAM151A	578	LLAHVGRN
Mmu_FAM151A	582	LQADVSSNRPSSRIGPSSVEGFPGESR
Consensus	279	

Appendix C: Alignments of DUF2181 Domains

Alignment of DUF2181 Domain in All Orthologs

Sra_DUF2181	1	FRHRAIPTIC
Ace_HypProt	1	-DGFNIRVALGVNSWPDIVDQIHEPFLNK-SMLIEGDVFIQTVRR-PRHRAIDVMRANART-ADRIUFKEWIRE
Cel_Menorin	1	
Dpa HvpProt	1	- DEGNIRVALGVNSWPDIVDORHEPFLNK-SMIDGOVFIOAHRR-PRHRAIDVMRADTKLADRINEKEMIRE
Lva UnChar1	1	- DEMENTING SAVING RSLIFT AMO DYMLMING AND RVKWSDTKKKNNGSVLIAPIPTKLNEDSVPIORYIYF
Aja UnChar2	1	-DETO TIMERNINTEGLIGOON DDYKLMMVIDVOVAENDKSTONLTAVVAPSDTN-VEYNLKIESFITY
Cse FAM151B	1	-NPAKTSWALGUNDRAFUKSSIMGD-VDMLEAD IVMGRLTD-GKENELPIMALPPKQISDLSUMEFUTV
VpeFAM151AB	1	-NI TKUWAH AWNSOANI TKAINA-DD-TMMHEDDWTGNLTN-SNNTNI DTMAHDDDIESDI. SIDDEFI SS
Con FAM151B	1	-NI TKILI MAHAVMONKKKI SOATSS-ND-VOMLEADWIGVI, IDNPISKEEDIMCHPDNFISDI, SEKERI T
Dme UnChar1	1	-NUTATITWAHAVNSQQUJUDEVITE-T-SG-TDETEADIVIGKUNG-DGEDMPIMAHPPANVSDUTUSEFINQ
Aag FAM151A	1	-NI TTYTWAH AWINKTYJE AATA
Pma FAM151A	1	-NI TTYTWAH AWNNKTYI DAATAASD-VSMI BAD TVI GHING-KDGBA I BWMAHBBATTSDLUTGDFI TA
Cte HypPro1	1	
Lan FAM151A	1	
Spi FAM151A	1	
Spi_FAM151B	1	
Cte HypProt	1	
Ofu UnChar1	1	
Cao UnChar1	1	
Sph EAM151P	1	
OD; EAM151A	1	
Sci EAM151A	1	
Cin EAM151A	1	
Aie UnChem1	1	
Aja_Unchari	1	
LVa_FAMIDIA	1	
	1	
DIE_FAMISIA	1	
	1	
HSa_FAMIDIA	1	
Ptr_FAMIDIA	1	
Vmc FAMIDIA	1	
Vpa_FAMISIA	1	
MMU_FAMISIA	1	- UCLV INITAANSAKEMAAAN
ECa_FAMIDIA	1	
BDU_FAMIDIA	1	
ALA_FAMISIA	1	
RTY_FAMISIA	1	-DELVIMHTAANSKSEMEAAAAGS-AMALJADVNIEGLNI-QNEIGIPIWAATSSIISDNIIGEWEDA
RD1_FAMI5IA	1	
AS1_FAMI5IA	1	-DEHVINYHAANKKSEMEDANKSE-VNVLSADINIEGNNI-PHELIKEIWAAT
	1	
Gae_FAMISIA	1	
BIL_FAMI5IA	1	
Dre_FAM151B	1	
Dby FAMIDIB	1	
BDU_FAMI51B	1	
Ala_UnCharl	1	
RTY_FAMI51B	1	-DADEDIWIHAANNKKAUMEDADKSG-VHWISADILIGSHGS-HKGEZIWARZPEIDSDNUUHNWUSE
RD1_FAM151B	1	-DIGAELIIWI HAANNSKSUU UPADAGA-AHMIDADVI UKAGGI-GNEEPIDAHPPUIDSDIII WEWISE
rmu_rAmibiB	1	
ran_ram151B	1	
	1	
PUT_FAM151B	1	-DIGALLIWI MAWIKAQI NEMUKSI-AHWI BADVI DYSDGS-EHSURIWA HZZETNSDNID U ENGTE DOMOTORI MANNUKA OMNENIK OT DUNITRADVI DODOGO DV. GOSTVALIS
ECa_FAM151B	Ţ	
Vpa_FAMI51B	1	
Gga_FAMISIB	1	
AS1_FAMIDIB	1	
Chille WHIPIR	Ţ	
Consensus	1	-DGLEIIWI <mark>H</mark> AANSKSELNEALKSD-AMML <mark>EAD</mark> VLLRGLGT-PN-TG1P1MAHPPATDSDNTLQEWLDE

Sra_DUF2181	56	MSP	LG <mark>KALK</mark> V	TLKNTEV <mark>V</mark> K	PVLQ-HI	YATN	HLIKS	SPIILH <mark>A</mark> NVFF	RSKRSLEK
Ace_HypProt	71	VAN	LKKATKI	NFRSTEVVR	PVI Q-YI	YASQA	DPLAPVLQY	(PVILHANVFF	RSPRSVEN
Cel_Menorin	23		A TK I	NFRSNEVVR	PVLQ-DI	YASQA	DPTSPVLQY	PVILHANVF F	RSPRSVET
Dpa HvpProt	71	MAN	LHKATKI	NFRSNEVVR	PVI Q-DI	ҮАТОА	DPTAHV	PVILHANVFF	SPRSVEP
Lva UnChar1	71	LSR	-YSNKCTOT	NEPDETAR	IAI P-QI	NGMK	SO	PVWLHADVL	RENLAEV
Aia UnChar2	68	IST	-YSNKGWKT	NEDCLDAIK	MAIK-SI	KALE	FD T HA	PIWLAVDVL	CPNADI-DKE
Cse FAM151B	67	DDENBDN-	-AFKKGTKI	DEKSTDAEE	AATRSE	FTNT			GPNAPS-YTK
VpeFAM151AB	68			DEKSI FAFF	BSKP-T	4FN			
Con EAM151B	69	VE VEFENONO-				NKI			OPTESKVK
Dme UnChar1	68	TINENRDH-	FDOKKOWKI	DEKSTEVEE		DVNT	DNDTTV		DVFON-BTV
	67	WHKYNKASK		DEKSTENEE		ADES	INIIII		
Dma FAM151A	67	WAOVNNCN-		DEKSTEAFE	יאם ששפתי וח–תחפאי	LAITS	KILVII		POPUNAT-TT
Cte HypPro1	66	WTF				VEEUDUAGAVAGA		DTHI SAAVI	ICDNAFFSTSK
Lap EAM151A	62	TI DANI N		NMCHDKVTC					ADCTNKT
Coi FAMISIA	61	TDT-				WNUTI			
Spi_FAMISIA	60	TT			DGER-TI				CPCOTD_CND
Spi_FAMISID	62					SDQIIA			
Cte_HypProt	67		-REDKGIKL			KEKE			GPGSSAD
Uru_Unchar1	67		-RNDKAPKL	DFRNEEVVA		KAKG	KAVSG		
Gae_UnCharl	67	LK5		DESTLUSVE		KNVNE			
Spn_FAMI51B	67	VKK	FPKGIKL	DERILDAVE		KGMK			GPFSDRL
UD1_FAMI5IA	67	VKK		DFRILDAVE		KKMK			GPISSRL
SCI_FAMI5IA	68	MIP				QLHR	SKIM		GPNILSI
Cin_FAMI5IA	67	11A	SDKALKL			RLHG			GPNINSD
Aja_UnChar1	65	MIR		DFKDVQAVQ				PLFFHADII <i>F</i>	GPNGQN-SVD
Lva_FAM151A	67	TTQ	-HTDKGMKL	DEKYLEALE	PSMI-LI	GDHE	SELKA		IGPNSPRD
Ufu_UnChar2	67	GKT		DFKSIĐAVE	L'II Q-N	KKVA	PK		GPNSKSN
Dre_FAM151A	67	VLK	SKKGVKL	DFKSISAVE	PSLD-LI	RAKNQ	TGINF	PVWINADIL	GPNVPE-FWP
Ccp_FAM151A	67	VLK	SKKGIKL	DFKSINAVE	LSLD-ILI	RVKNQ	TGINF	PVWINADIL	GPNVPV-FWP
Hsa_FAM151A	67	VLG	-SSQKGIKL	DFKNIKAVG	PSLD-LI	RQLTE	EGKVRF	PIWINADIL	GPNMLIST
Ptr_FAM151A	67	VLG	-SSQKGIKL	DFKNIKAVG	PSLD-LI	RRLTE	EGKVRF	PIWINADIL	GPNMLIST
Pan_FAM151A	67	<u>VL</u> G		DFKNIKAVG	PSLD-LI	RRLTE	EGKVRF	PVWINADIL	GPNMLIST
Vpa_FAM151A	67	VLT	-SSQKGIKL	DFKSIKAVG	PSLD-LI	RRLTS	EGRVRF	PVWINADIQF	GPNVPIPI
Mmu_FAM151A	67	VLA	-SSQKGIKL	DFKSLKAVG	PSLD-LI	RQLTE	AGRIRF	PVWINADIL	GPNVPISI
Eca_FAM151A	67	VLA	-SSQKGIKL	DFKSLKAVG	PSLD-LI	RRLTE	DGRVRF	PVWINADIL	GPNVPISV
Bbu_FAM151A	67	<u>VL</u> Q	SSRGIKL	DFKSIQAVG	PSLD-II	LATSS	RTPINF	PVWLNADIL	GPNVNHEI
Xla_FAM151A	67	VLK	SPKGIKL	DFKSIQAVG	PSLD-II	FAKAS	EVKINF	PVWLNADIL	GPNVNHEI
Rty_FAM151A	67	VIR	SKKGIKL	DFKSIDAVN	PSLD-II	VKKYN	EIHFNF	PVWLNADIL	IGPNVPG-FMQ
Rbi_FAM151A	67	VLM	STKGVKL	DFKTIKAVG	PSLD-II	VKKSS	QISF	PVWINADIL	GPNININI
Asi_FAM151A	67	VLN	-SSRKGIKL	DFKSIKAVG	PALE-II	LKKSQ	EVDINF	PVWLNADIL	GPNVLVNV
Cpi_FAM151A	67	VLN	-SSSKGIKL	DFKSIKAVG	PSLD-II	LKKSS	EMK <mark>I</mark> NF	PLWLNADILN	GPNVPINT
Gae_FAM151A	68	VAE	SNKGMKL	DFKSLESVA	PALK-II	KKKHD	QGR <mark>L</mark> TC	PVWLNADIL	GPNTTAK
Bfl_FAM151A	67	ALE	SSKGLKL	DFKSIGSVA	PSLR-II	RNKS	NLINF	PVWLNADIL	GPNTVNP
Dre_FAM151B	63	VV K	TD <mark>KGIKL</mark>	DFKSLAAVS	QSMS-ILI	EEIR	DQ <mark>L</mark> KG	PVWINADIL	GPGGTAT
Ccp_FAM151B	63	V VK	SDKGIKL	DFKSLAAVS	PSMT-LI	EEVR	DQ <mark>I</mark> QG	PVWINADIL	GPRGTAT
Bbu_FAM151B	63	VSA	S <mark>SKGIKL</mark>	DFKSLEAVL	PSMK-II	DAMK	DN <mark>U</mark> HQ	PVWINADIL	GPGGSV-
Xla_UnChar1	61	VSS	CE <mark>KGIKL</mark>	DFKCIEAVL	PSLQ-II	ААМК	ATVKG	PVWINADIL	GPGGKAK
Rty_FAM151B	65	V QQ	SDKGIKL	DFKSLSAVE	PAMK-MI	VSMK	DL <mark>I</mark> TF	PVWINADIL	GPNES
Rbi_FAM151B	65	₩К	TNR <mark>GIKL</mark>	DFKSLEAVK	PSMV-LI	NGVK	TRIKS	PVWINADIL	GPGGTNM
Mmu_FAM151B	65	V VK	SNKGIKL	DFKSLAAVR	ASML-F	DNMK	QH <mark>L</mark> QF	PVWINADIL	GPNGSSK
Pan_FAM151B	65	V ТК	SNKGIKL	DFKSLAAVE	PSMM-LI	ENVK	RH <mark>I</mark> KF	PVWINADIL	GPNGNSK
Hsa_FAM151B	65	V МК	SNKGIKL	DFKSLAVVE	PSMM-LI	ENVK	RH <mark>I</mark> KF	PVWINADIL	GPNGNSK
Ptr_FAM151B	65	₩К	SNKGIKL	DFKSLAAVE	PSMM-LI	ENVK	RH <mark>I</mark> KF	PVWINADIL	GPNGNSK
Eca_FAM151B	65	V VK	SNKGIKL	DFKSLAAVE	PSLM-LI	ENVK	RH <mark>I</mark> KF	PVWINADIL	GPNGHSR
Vpa_FAM151B	65	V IK	SNKGIKL	DFKSLAAVE	PSMM-LI	ENVK	RH <mark>I</mark> KF	PVWINADIL	GPNGNSR
Gga_FAM151B	65	MAG	TD <mark>KGIK</mark> L	DFKSLDAVR	PSLE-LI	QLVK	PC L EF	PVWLNADVLF	GPNGINA
Asi_FAM151B	49	ILN	AD <mark>KGIK</mark> L	DFKSLPAVQ	PSME-LI	ESIK	LH <mark>I</mark> KF	PVWINADIL	GPNGSNA
Cpi_FAM151B	65	IVN	TK <mark>KGIK</mark> L	DFKSLAAVK	PSMM-LI	EGIK	LH U RF	PVWINADIL	GPNGSNT
Consensus	66	VLK		DFKSIEAVE	PSLD-LI	_ LRAKK	PKLKF	PVWINADIL	GPNGPSK

Sra_DUF2181	107	PVDSYTLLENAHKYV	PNAAI <mark>SLGW</mark> T	RQSDTSNSNNI	LQNTNYLDI	VGQTFK	ILSYL	NSVN	YQPIILTIKLSDALAS
Ace_HypProt	127	VVDPSSFVDRARRLF	PDATLSLGWT	KQSNFSMLN	-PKYKRL	WRQLFQ	ILEYI	ARLD	-QPVMLSVRLSVAANS
Cel_Menorin	73	EVDPSTFVEKAKDLF	PDATLSLGWT	KQSNFSHLH	-PKFKKLS	WRQLFH	ILEYI	SRLD	-QPVMLSVRLSVAAHS
Dpa_HypProt	127	EVDPATFVERTSNLF	PDATLSLGWT	KQSNFSHLH	-PKFKRL	WRQLFE	ILEYI	AR <mark>L</mark> E	-QPVMLSIRLSVAAAS
Lva_UnChar1	123	PVDPNQFIGLVQSNF	PSSTLLLGWA	TTWSP-D	-APQIR <mark>Y</mark> SV	VYNVIE	MAKTC	AGAK	-QPVSFAVRAIYARKS
Aja_UnChar2	122	PVDLQKAVDLVKEYY	PITLSLGWQ	TDWSP-E	-PVETG <mark>Y</mark> SI	VYHVIS	MAKFC	VKFQ	-QRASESIRAVYAAES
Cse_FAM151B	128	PVDAARFLKGSK-LI	PNAM <mark>LSLGWT</mark>	T <mark>G</mark> FNN-T	H <mark>N</mark> SG YT I	FPQIEE	MLYTI	KQNEVN	-QPITFAVRAGLVAES
VpeFAM151AB	120	PLDSKSFLTGAMEAF	PESVLSIGWT	TRYGS-EFN	-ITEGH <mark>YT</mark>	reqiqk	MIDTL	TENKVT	-QSITYPVRAGLAAND
Ccn_FAM151B	127	PVDPDRFLSGAK-QF	TRSI <mark>LS</mark> IGWT	KYGP-D	-NSNGTYSI	ESNIKE	MINVI	NDNNVT	-QSITFPVRAGLAAQS
Dme_UnChar1	129	PVDADRFFAGCM-RYP	(QAV <mark>LS</mark> IGWT	TNWGA-D	-FRDGEYT	QQCDD	MLETL	SENNVLSTG	-QAI <mark>TFPVRA</mark> GIAANS
Aag_FAM151A	128	PVDPIKFIKLCG-NH	PRAVMSVGWT	TEYGG-N	-VTEGE <mark>Y</mark> SI	RDQIGS	MLRLM	TENRIN	-QTVTFPVRAGLASNS
Pma_FAM151A	126	PVDPLKFLNLGA-KH	PRAVLSVGWT	TNYGG-N	-ITEGE <mark>Y</mark> SI	RNQIGT	MLRLVI	NE-HVN	-QTVTFPVRAGLASNS
Cte_HypPro1	137	PLDASRFIHLCSSLM	PRATLSLGWT	SKMVN	-GKTSR <mark>Y</mark> SI	VTTV MQ	MFDLI	HDAQ <mark>L</mark> S	-LPISLNLESEFVSGS
Lan_FAM151A	118	MINPMQLFSQIDQIY	PAVTLSVAWA	SD	-SSQTSYT	QSMMEE	MYSLI	KN <mark>L</mark> K	-QPVSITVRAALVKNA
Spi_FAM151A	120	PVDHERFLSLCKSYY	PNATLSISWK	TGENM-T	-ASKNY <mark>Y</mark> NI	VSQVLP	MGKLV	SQIA	-QPITFPFRANLVQRS
Spi_FAM151B	118	PVDPQVFLSLCAKYF	PSATLSVGWT	TGKYI-S	-PEKDGYDI	WHLVQP	MKQLL	SNLT	-QPITFAIRANLIGNS
Cte_HypProt	119	PIDPKQFLSIVNEVW	PNMTLSLGWT	TGCCE	PF	RQMMED	MLEVC	HGVT	-QPVTFPARAASFRAS
Ofu_UnChar1	119	NFNAARFFTAVNTHF	PRVTLSLGWT	ISHGY	N YT F	KQHIES	LWQLI	QNVT	-QPITFPARASSFKYA
Gae_UnChar1	120	TVDATREFRTMKRLEE	PRCTLSLGWT	TGIHT-D	-LSQSG <u>YT</u> (VDMVMD	MYDLI	QKWDVGD	-QPIVEQARLSLIHNS
Sph_FAM151B	118	PVDSTRFLRNVRTFF	PSCTLSLGWT	SGYHT-D	-VSQSGYT	WNMULD	MHDLI	RKWEIT-	-QPLVFSVRLSLIANS
Obi_FAM151A	118	PVDATRFFRNVRTFF	TCTLSLGWT	TGYHT-D	-VSQAGYTI	VDMVLD	MHDLI	IHWEIS-	-QPLVFSVRLAYIKNS
Scl_FAM151A	119	PIDGDYFVHNVNQYF	PNVTLSLGWT	TGYRI-A	-LENEEYS	VESMDD	MLRILA	SSTN	-QRITFPIRAALARQS
Cin_FAM151A	118	PIDSNIFLPEVNSKF	PNVTLSLGWT	TGYRNVG	-PPNEKYS	NDAMERI	MLSILS	RPLN	-QLITYPARAALLRQS
Aja_UnChar1	119		NATIFSLEFV	SSASSGL		WIMIFD		STVTT	-HPITFNFRAVWANKS
Lva_FAM151A	119		DKTILSLGFT	AWGP-M		WIMIFD.	NLYYS	YPLDP	
Dru_UnChar2	118	PVDAERFEKLCSEMF		VSLEG	KEKQYS		WYCTT		
Dre_FAMISIA	121	VVNASEFFELIQLAF	DVIISPGWA			COMVEU DOMVEE	MALTI		
	100								
D+r EAM151A	100		KATLSFGWI				MUCI V.		
Pop FAMISIA	122		KATLSFGWI	TEVMS-T		AUMER AUMER	MHEI V.		
Vpa FAM151A	122	ETNATBELALAOEKY	PEATLSTOWT	TLYLP-M	-FPMSTVT	RAMMER	MOELV	GA II P	
Mmu FAM151A	122	EINATOFITIVOEKY	KATTSPGET	T.YVP-Q		JAMMET	MOEIN	GA II P	
Eca FAM151A	122	EVNATRELALVOEKY	PEATLSPGWT	LYEP-L	-LPSGTYT		MOGINV	GVI	-ORVTEPVRAVMARAA
Bbu FAM151A	121	GVNATOFINLIGERE	DITISPGWV	LYLPPI	-ISNRTYS	SEMWIKK	MYNIIV	KG I T	-ORITEPARAVLTCSA
Xla FAM151A	121	GVDATQFLNLVKNKF	DVTLSPGWV	TLYLPPI	-ISNRTYT	REMIQQ	MYNMV	RD	-OKITYPARAVMTRSA
Rty_FAM151A	122	PVNASRFLGLIQQRF	NVILSPGWM	SLYLP-M	-IATKPYT	RKMVEE	MYDLV	KGLS	-QRVTFPVRAVLLKPA
Rbi_FAM151A	119	AVNATQFLDLVQRKF	PNVTISPGWV	LYLP-F	-LSNKTYT	VPMIWK	MYTLV	RD I P	-QRITFPVRAVMIKSA
Asi_FAM151A	122	SLNASTFLSLIQEKY	PNCTLSPGWT	TLYSP-L	-FPKQT YT I	RAMIQK	MHDLI	GE <mark>II</mark> P	-QKVTFPVRAIMVRLA
Cpi_FAM151A	122	AVNASLFLSLIQEKY	PNCTLSLGWT	TLYSF-L	-FP <mark>N</mark> KT YT (QKMIQK	MHSIV	GT <mark>IL</mark> P	-QRVTFPVRAVMVRLA
Gae_FAM151A	121	GRDAPQFLKIVDETF	PQCTLSIGWT	TGWTN-T	-EADTG <mark>Y</mark> SI	MEMVRE	MNELA	RP <mark>I</mark> R	-QPVSFPIRAAAAKRS
Bfl_FAM151A	118	GVNAREFIDTVNRIF	PECTLSIGWT	TGFYY-D	-RENEGYTI	RQMVEE	MHSYC	GD <mark>L</mark> T	-QPVTFPIRNSLLSLP
Dre_FAM151B	114	PVDPHVFLQEVAQRS	ENDV <mark>LSLGWT</mark>	TGWTA-N	-VDNPGYS	VEMVHQ	MEELC	RP L K	-QPVTFPVRASLLPMS
Ccp_FAM151B	114	PLDPHVFLQEVAQKS	ENDVLSLGWT	TGWDV-D	-ADNPGYS	VEMVHQ	MEELC	RS <mark>L</mark> K	-QP <mark>VTFPVRAAL</mark> LPAS
Bbu_FAM151B	113	TVDAREFLQIVTSFF	P <mark>NVTLSLGWT</mark>	TAWHP-D	-KSNEGYSI	VEMVRE	MEKIC	KN <mark>L</mark> S	-QLVTFPVRAALVRQS
Xla_UnChar1	112	AVDAKEFIHTVMLYF	PDVTLSLGWT	TGWNP-G		VEMVQE	MEKIC	KGLS	-QPVTFPVRAALLRQS
Rty_FAM151B	114	KDFLCIVTSYL	PHVTLSLGWK	DELV-N	-QTNIVYT	VEMVKE	MEQIC	QT <mark>L</mark> S	-QPVTFPVRAALVRPS
Rbi_FAM151B	116	PLDAKRFLEVVTSFFS	SDVTLSLGWT	TGWHP-Q	-KSNEGYS	VEMVKE	MEHIC	SALS	-QPVTFPVRAALVRQS
Mmu_FAM151B	116	VVDAKAFLDTVTSFF	PDVTFSLGWT	TCWHP-E	-KVNEGYS	VSMAKE	MDYIC	SELT	-QPVTFPVRAALVRQS
Pan_FAM151B	116	VIDAKPFLDTVTFFF	DVIFSLGWT	IGWHP-E	-KVNEGYS	WTMVKE)	WEYIC	NEILS	-QPVIFPVRAALVRQS
nsa_rAM151B	116	VIDAKPELDIVISEE		IGWHP-E		WIMMKE	MEYIC		-QPVIFPVRAALVRQS
FUT_FAMIDIB	110		DVIESLGWI				MEVIC		
Vpa FAM151P	116								
Gra FAM151P	116	VWDAFCEI FTWTSEE				JTMME	MADIC	QTT	
Asi FAM151R	100	VVDAKFET DIWTSFE	DTTLSLGWT		-RCKECVSI	A MMKEI	MAETC	α <u>υ</u> τα. Τ υ λη	
Cpi FAM151B	116	VVDAKRFIDTVTSFC	DVTLSLGWT	TCWOP-0		VAMWIKFI	MADIC	DG	
Consensus	117	PVDAKRFLDLVQSKF	PDVTLSLGWT	TGYHP-D	-KPNEGYT	VEMVEE	MLELC	LP	-QPVTFPVRAALVRQS
		•							

Sra_DUF2181	182	SDQILFICGQ-N-	RPFYVI IYS KP-EDPIN	NINVFQNFLSFARHNGNVIFDLPPEYR
Ace_HypProt	198	KDQILWILGM-D-	KAISELINSDK-DDEEI	DWASVAE IR RV-ATKNRVLY <mark>D</mark> EPRHR
Cel Menorin	144	KEQULWUUGM-D-	-OSISTLLNSDA-EDHVT	NWTPIVELRRS-TTKNRILYDDPKHR
Dpa HypProt	198	KEQULWILGM-D-	-OSVSILINSDE-EDKID	DWNSIVOLERS-TTKNETLYDE
Lva UnChar1	191	TROURFULSIT-	-SRFSITIVATOV-YDTMP	I.PDI.VHFBKNMD-PKRVHYNI
Aia UnChar2	190		-SRESAVIMLAE-HDVVS	WSAMVYFBKOTD-KKKWFYTUP
Cse FAM151B	196	ODOMTLINERN	-NNHTITTWSGVQDDGFD	
VpeFAM151AB	192		SEGNVTMTTWSSH-GDOVD	
Con FAM151B	196	FKETLK	TNGSTITTWSSE-NDPVN	
Dme UnChar1	201		TNESTITINSSA-GDYVD	
Aag FAM151A	197	OPVTLD	FLNSSMOVWSSE-SDHVE	WDRIBALTLTVG-LERTYLDVPHELA
Pma FAM151A	194	OPVTLD RETA-	SLNSSMOVMSSE-GDAVE	WDRJ RALTLTVG-LERTYL DVPDDL
Cte HypPro1	206			
Lan EAM151A	182		-SNET TWO RET	
Spi FAM151A	188			
Spi_FAM151R	186		-FFYTITTUSAD-SDAPN	
Cte HypProt	182	WEHEKWIJEOND-	-FSVTTTVVTPS-CA-FD	
Ofu UnChar1	182		-NCVTTOANTDA-SAFVS	
Cae UnChar1	102			
Sph EAM151B	188			
Obi EAMIEIA	100			
COL FAMISIA	100			
Cin EAM151A	107			
Ain UnChar1	107			
AJA_UNCHAFI	109			
LVa_FAMISIA	100			
Dru_UnChar2	109		CDVCLTLWSHE-SHLVQ	
Dre_FAMISIA	109		-DRESITINGCK-ENP-I	
Ucp_FAMISIA	109			
HSA_FAMISIA	190	WPHFSWLLSQ-S-	-ERISLILWUAA-SUPMS	
Ptr_FAMI5IA	190	WPHFSWLLSQ-S-	-ERISLILWQAA-SDPMS	
Pan_FAMI5IA	190	WPHFSWLLSQ-S-	-ERISLILWQAA-SDPMS	
Vpa_FAMI5IA	190			
MMU_FAMISIA	190	WPHFSWLLSQ-S-		
Eca_FAMISIA	190			
BDU_FAMIDIA	190			
AIA_FAMISIA	190			
RUY_FAMISIA	190	WPHFSWLLSQ-S-		
RDI_FAMIDIA	107			
ASI_FAMIDIA	190			
Cp1_FAMI5IA	190	WPHFSWLLAQ-S-		
Gae_FAMISIA	109	CTLENVIKULEO		
BII_FAMIDIA	100	GILENIGAWLLEQ-S-		
Dre_FAMI51B	102	FPQFQWLLEQ-S-	DRSEILH	
CCP_FAMI51B	102			
BDU_FAMI5IB	181			
X1a_UnChar1	180		-DRFSLTVWAGK-DDIYP	
RTY_FAMI51B	1/8		UDVOLTUTAR-EDLY	
KD1_FAM151B	104			TENT WIDDEN KTOUEVELCEDON
MMU_FAMI51B	184			
Pan_PAMI51B	104			
nsa_FAMI51B	184			
PUT_FAMIDIB	184			
LCa_FAM151B	184	CSQLLWLLKK-S-	-nrisliuwigk-ndnys	
vpa_rAMI5IB	152			
Gga_FAMI51B	184			WEINERFURENFU-KSKVYYUISEPUN
AS1_FAMIDIB	104			
ODI_LAMI2IR	104			VEDIATIONED KEDIKADI DEDAT
consensus	183	wrquurwrred-S-	LRISLIIWSGK-SDPVS	vederitkdmed-kektiidererer

Alignment of DUF2181 with Other Members of GDPD/PLCD Superfamily

F151A2	DGLNVEWLVPDVQGSGKTATMTLPDTEGMILLNTGLEGTVAENPV	45
F151A1	DALEVTWY <mark>H</mark> AANSKKAMTAALNSNITVL <mark>E</mark> A <mark>D</mark> VNVEGLGTANETGV	45
F151B1	DGAEITWY <mark>H</mark> AANHKAPATNEALKSTAHMI <mark>E</mark> A <mark>D</mark> VLLPSDGSEHSQ	43
MNR1CE	DGLNVRVA <mark>H</mark> GVNSWPDLVDQLHEPFLNKSMMI <mark>E</mark> G <mark>D</mark> VFMQAHRRPRHRAV	49
GDPDEC	SNEKIVIA <mark>H</mark> RGASGYLPEHTLPAKAMAYAQGADYL <mark>E</mark> Q <mark>D</mark> LVMTKDDN	46
GPCP1H	DVG <mark>H</mark> RGAGNSTTTAQLAKVQENTIASLRNAASHGAAFV <mark>E</mark> F <mark>D</mark> VHLSKDFV	49
GDPDOI	MTKIIA <mark>H</mark> RGASKYAPENTRASFELAHQMNADGI <mark>E</mark> T <mark>D</mark> VQLSKDGI	44
F151A2	PIVHTPSGNILTLESCLQQLATHPGHWGIHLQIAEPAAL	84
F151A1	PIMA <mark>H</mark> PPTIYSDNTLEQWLPAVLGSSQKGIKL <mark>D</mark> FKNIKAV	85
F151B1	PIMA <mark>H</mark> PPETNSDNTLQEWLTEVMKSNKGIKL <mark>D</mark> FKSLAVV	82
MNR1CE	PVMKADTKLADRITFKEWLPREVATMNKAIKINFRSNEVV	88
GDPDEC	LVVL <mark>H</mark> DHYLDRVTDVADRFPDRARKDGRYYAIDFTLDEIKSLKFTEGFDIENGKKVQT	104
GPCP1H	PVVY <mark>H</mark> DLTCCLTMKKKFDADPVELFEIPVKELTFDQLQLLKLTHVTALKSKDRKESVV	107
GDPDOI	PILF <mark>H</mark> DEKIKRIMRRKGFLQDYTYNELKSMDIGSWFGSNFIGETI-	89

. . .

F151A2	LAARAVD	225
F151A1	ERYSLTLWQAASDPMSV-EDLLYVRDNTA	228
F151B1	EDLLYIRDHFD	222
MNR1CE	ELRRSTT	237
GDPDEC	HMLIEETSQPGNIKLTGMVQDAQQNKLVVHPYTVRSDKLPEYTPDVNQLYDALYNKAG	312
GPCP1H	VHTEDLLRNPSYIQEAKAKGLVIFC <mark>W</mark> GDDTNDPENRRKLKELG	283
GDPDOI	IHIKHRLLQPKLVQQAKTENMPLRVYTVNKPKQLELCFKYN	222
F151A2	RTRVYYRLPUGYH 238	

I IOIAZ		200
F151A1	VHQVYY <mark>D</mark> IFEPLL	241
F151B1	KKQVFY <mark>D</mark> ILEPQN	235
MNR1CE	KNRILY <mark>D</mark> LDPKHR	250
GDPDEC	VNGLFT <mark>D</mark> FPDKAVKFLN	329
GPCP1H	VNGLIYDR	291
GDPDOI	CDSVFT <mark>D</mark> VPDIAKTAYQTYL	242

Appendix D: FAM151A Promoter Analysis

FAM151A Promoter Diagram with Highlighted Predicted TF Binding Sites

Only the core of each transcription factor is highlighted for clarity. A full guide to each transcription factor is given in Table A3.

GATA1 CTTACGCAGAT <mark>CTAATCT</mark> GTCTTTGTCAC GAATGCGTCTAGATTAGACAGAAACAGTC	CCACCCTTGCCTGATAATGC <i>I</i> GC <mark>TGGG</mark> AACGGACTATTACG7 LKLF	AGGATTCCCTGAGGGCAGGGCAGAAAGCCTGG FCCTAAGGGA <mark>CTCC</mark> CGTCCCGTCTTTCGGACC MIZ1	
AGTTAGAAAGGGAAAGAACAGAATGTTCC TCAATCTTTCCCTTTCTTGTCTTACAAGC GREF	GGGATCACCCAGTCTAGTGCC CCCTAGTGGGTCAGATCACGC	CTCCTTTTACACGGAAGGAAATGATGCCCAGA JAGGAAAATGTGCCTTCCTTTACTACGGGTCT	
ZBTE GACCGGCAGACACTTGCTCCAGGAC CTGGCCGTCTGTGAACGAGGTCCTGAGGT	326 I <mark>GA</mark> AAAGCAACAGGGGGCTGGC ICTTTTCGTTGTCCCCGACCC	GATTGGTCTCCTGACTCCCAAGCAGGGGCAGA CTAACCAGAGGACTGAGGGTTCGTCCCCG <mark>TCT</mark> SMA] D
ZF11 CA <mark>GCCA</mark> GGGGTCGGGGCTCGGTCCAACAT GTCGGTCCCCAGCCCCGAGCCAGGTTGTA	TTCTCTGCTGCCTCTTACTGT AAGAGACGACGGAGAATGACA	NR2F NBRE FGCTCAAAA <mark>GGTCA</mark> TTTTAGATATGGTAGATAT ACGAGTTTCCAGTAAAATCTATACCATCTATA	
HNF1 ZTRE TCTG <mark>GTTA</mark> GCCTGTTAAGATCCTG <mark>GGAG</mark> AGACCAATCGGACAATTCTAGGACCCTCO KI	KLFS MZF1 SP1 GT <mark>GTGGGG</mark> AAGAGGATTG <mark>GG CACAC</mark> CCCTTCTCCTAACCC F9	LF MZF1 ZNF263 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
	1. St.		

Label	Description/Full Name
GATA1	GATA binding protein 1
LKLF	Krueppel like transcription factors (Krueppel-like factor 2 (lung))
MIZ1	Myc-interacting Zn finger protein 1 (Myc-interacting Zn finger protein 1,
	zinc finger and BTB domain containing 17 (ZBTB17))
GREF	Glucocorticoid responsive and related elements (Androgen receptor bind-
	ing site, IR3 sites)
ZBTB26	Zinc finger and BTB domain containing 26
SMAD	Vertebrate SMAD family of transcription factors (Sma- and Mad-related
	proteins)
ZF11	C2H2 zinc finger transcription factors 11 (Zinc finger and BTB domain
	containing 3)
NR2F	Nuclear receptor subfamily 2 factors (Chicken ovalbumin upstream pro-
	moter transcription factor 2, NR2F2 homodimer, DR1 sites)
NBRE	NGFI-B response elements, nur subfamily of nuclear receptors (Nuclear
	hormone receptor NUR77 (NR4A1))
HNF1	Hepatic Nuclear Factor 1 (Homeobox containing 1)
ZTRE	Zinc transcriptional regulatory element (3' half site of ZTRE motif)
KLF9	Kruppel like factor 9
KLFS	Krueppel like transcription factors (Gut-enriched Krueppel-like factor /
	KLF4)
MZF1	Myeloid zinc finger 1 factors (Myeloid zinc finger protein MZF1)
SP1F	GC-Box factors SP1/GC (Sp2 transcription factor)
ZF37	C2H2 zinc finger transcription factors 37 (Zinc finger protein 37 alpha
	(KOX21))
ZNF263	Zinc Finger Protein 263
ZNF148	Zinc Finger Protein 148

Table A3: Description of transcription factors predicted to bind to FAM151A promoter.

FAM151A Promoter Multiple Sequence Alignment

MmulFAM151A_prom
Hsa_FAM151A_prom
Ptr_FAM151A_prom
Cfa_FAM151A_prom
$Ssc_FAM151A_prom$
Bta_FAM151A_prom
Ocu_FAM151A_prom
MmusFAM151A_prom
Rno_FAM151A_prom
Consensus

1	1CTTATGCAGATCTAATCTC	TCT	TTGTCA	CCACCCTT	GC <mark>C</mark> TGATAA T A	A <mark>CA</mark> GGATTCCCTGA
1	1CTTACGCAGATCTAATCTC	TCT	TTGTCA	CCACCTT	GC <mark>C</mark> TGATAA <mark>T</mark> O	G <mark>C</mark> AGGATTCCCTGA
1	1CTTATGCAGATCTAATCTO	TCT	TTGTCA	CCACCTT	GC <mark>C</mark> TGATAA <mark>T</mark> O	G <mark>CAGGATTCCCTGA</mark>
1	1GCAGATATAATCTO	TCC	TTGTCA	T <mark>CAAC</mark> ATT	T <mark>GCCTGACCT</mark>	TGGTGACTTCCTGG
1	1 AAGCAGATTCGCATTCTAATCCAT	CCA	CA <mark>GTCA</mark>	CC <mark>C</mark> ACCCT'	T <mark>GTG</mark> TGACCT	TCGTGACTCCCTGG
1	1CTTGGGCACATCTAATCTG	TTC	CTGTCA	C <mark>TC</mark> ACCCT	TGCCTGAACT	ICATGACTCTCTGG
1	1CTCAGGCAGATCTAATCTC	TCC	TTGTCA	C <mark>T</mark> AACCCT	TG <mark>CCTG</mark> G <mark>CC</mark> C(GG <mark>G</mark> ATTACAGGG <mark>G</mark> C
1	1GCAGATCTAATCT	ACT <mark>C</mark>	TTGTCA	CCAACCCT	TTCATGACGT	AG <mark>GG</mark> CTTCCCTGGA
1	1GCAGATCTAATCTO	CTC	TTGTCA	CCAACCCT	TTCATGACCT	AGGGGTTCCCTGGA
1	1CTTA-GCAGATCTAATCTC	TCC	TTGTCA	CCAACCCT	TGCTTGACCT	ACGGGATTCCCTGA

MmulFAM151A_prom Hsa_FAM151A_prom

61	GGGCAGGCAGAAAGCCTGGAGTTAGAAAGGG	-A <mark>A</mark> GAACAGA <mark>ATG</mark> TT <mark>CGAGAT</mark> C <mark>ACC</mark> C <mark>A</mark> GTCTAG
61	GCGCAGCAGAAAGCCTGCAGTTAGAAAGGG	AAAGAACAGAATGTT <mark>CG</mark> GGATCACCCAGTCTAG
61	GCGCAGAGCAGAAAAGCCTGGAGTTAGAAAGGG	AAAGAACAGAATGTTCGGGATCACCCATTCTAG
56	GGCAAGGCAAAA	CAAG <mark>GA</mark> AAAG <mark>ATC</mark> AATC <mark>CAG</mark> C
66	GGCAGGCAGAA	AGAGGGAAGGAGTATCT-AGC
61	AAT <mark>A</mark> G <mark>GGCAGAA</mark>	AGAAGGAAGG <mark>ACC</mark> AACT-AGG
61	-AG <mark>GGCAGAAA</mark> G <mark>GCCT</mark> G <mark>GA</mark> GGC <mark>AGA</mark> TGAGA	AAAGGC <mark>GG</mark> CA <mark>GAGAT</mark> CACCCAGCCGGC
56	-GCAGA <mark>GCAGAAA</mark> GGT <mark>CT</mark> AGCTTG <mark>AGA</mark> CCTAA	AGAGATGGCCAAGTTCAGT
56	-GCACAGCAGAACAGTCTAGACTGAGGAGTAA	AGAGATGGCCAAATTCAGC
60	GGCAAGGCAGAAAAGCCTGGAGTTAGAAAGGG	AAAAATGGTCGAGATCACCCAGTCAGG
125	TGTCTCCTTTTACACAGAAGGAAATGAGGC	CCAGAGA <mark>GG</mark> GGCAGACAT
126	TGCCTCCTTTTACACCGAAGGAAATGATGC	CCAGAGA <mark>CC</mark> GGCAGACA
126	TGCCTCCTTTTACACGGAAGGAAATGAAGC	GCAGAGA <mark>GGGGCAGA</mark> CA
89	CTCCACCTTTTGCACAGGGGAAGAAOAGGG	<mark>CCCGCGA</mark> GG <mark>AAGA</mark> CC <mark>COT</mark>
98	TGCCTCCTTTCATGCAGGGGAAGAAA	AC
93	TGCCTCCTTGTATGCAGGGGAAGAAA	AC
117	TGCCCCTTTCCCACCGGGGCAGGGGTGGGGGA	GGGGGTAAGCGGC <mark>CCAGAGA</mark> AG <mark>GGCAGA</mark> TG <mark>CTT</mark>
106	TGCTTCCTTTCACACAGGGGTAAAAACAAGG	CCCGG <mark>GCA</mark> TCC <mark>A</mark> GAT <mark>GCA</mark> TTGA <mark>CTT</mark>
106	TGCTTCCTTTCACACGGGGGTACAACAAGG	TTGGGAG <mark>GA</mark> CTCTTTGG <mark>CTT</mark>
119	TGCCTCCTTTTACACAGGGGGAAAAAGAGGGG	CCAGAGAGGGGCAGACACTT
175	GCTCCAGGACTCCAGAAAAGCAAGCAGG	GGCTGGGAT <mark>TGGTCTCCTG</mark> ATTCCCAGGCA
176	GCTCCAGGACTCCAGAAAAGCAACAGG	GGCTGGGAT <mark>TGGTCTCCT</mark> G <mark>ACTCCCAA</mark> GCA
176	GCTCCAGGACTCCAGAAAAGCAACAGG	GGCTGGGAA <mark>TGGTCTCCT</mark> G <mark>ACTCCCAGGCA</mark>
139	GCTCCAGGTCTCAGGAAAGCAAGGGCCAGCTG	GGTCTAGATCTCCCGGGTCTCCCAGGCA
126	CTCCAGGTCTTCAGGAAAGCAAGGTCAAGCAG	AGTCT <mark>AGATC</mark> CTGGTCTCGCAACCCCAGGCA
121	CTCCAGGTCTCAGGAAAGCAAGGTCAAGC	GGTCCAGATCCCTAGTCCCCCAACTCTCAGGCT
182	GCTCCAGGCCTCCAG <mark>GAAAG</mark> CAGGTAGAGCCA	GG-CT <mark>AGATC</mark> TCTGGTCTCCCAGCTCCCGGGGEA
161	GTTCTAGGCCATCAGGAAACCCAGGCCAGCTG	GGTT TC CT TAGCCTCCTA CCCTTGCACC-
157	GCTCTAGGCCACCGTGAAACCCAGACOAGCTG	GA-ATAGATCCTAGCTCGTTCCCTTGCACC-
169	GCTCCAGGCCTCCAGAAAACCAAGACGAGCTG	CGAGATCCCTGGTCTCCTAACTCCCAGGCA
232	GGGGCAGACAGCCAGGGGTCG	GGGCT <mark>T</mark> GGT <mark>TCA</mark> GCATTCTCTGCTGCCTCTTAC
233	GGGGCAGACAGCCAGGGCTCG	GGGCTCGGTCCAACATTCTCTGCTGCCTCTTAC
233	GGGGCAGACAGCAGCAG	GGGCTCGGTCCAACATTCTCTGCTGCCTCTTAC
204	GGAGCAGCAAGCACGGGGATAGGGGCTT	GG <mark>C</mark> CCA <mark>A</mark> CA <mark>TTCT</mark> CTG <mark>GCCTCTTA</mark> A
191	GGTGCAGTCAGGCTGCCGGTGG	GGGCTCCGTCTACCATCCTCGGCTGCCTCTCAA
186	GGAGCAGACAGCAGCAGCAGGCGAGAGCAGTGGT	GGGCTCCATCTAACATCTGCTGCTGTCTGTTAC
246	- <mark>-C</mark> G <mark>CCAC</mark> G <mark>CAC</mark> G <mark>CA</mark> ACAGGCA <mark>GC</mark> CGA	GGGCTCAGTCCCACACCTCCGCCTCCTAGG
221	AAGGGT	CGGGCTGTATCCAATCCTC-CACCGCTTCCCAA
220	A <mark>CC</mark> GGT	C <mark>GG</mark> GCT <mark>G</mark> TATCCAATCCTC-CACTGCTTCCTGA
231	GGGGCAGACAGGCAGAGGTGG	GGGCTCGGTCCAACATCTTCTGCTGCCTCTTAC
286	TGTGCTCAAAGGTCATTTTAGGGGATGGCA	GA <mark>C</mark> TTTCTG <mark>G</mark> TTAGCCTGTTAAGATCCTGGGAG
287	TGTGCTCAAAGGTCATTTTAGATATGGTA	GAT <mark>A</mark> TTCTG <mark>G</mark> TTAGCCTGTTAAGATCCTGGGAG
287	TGTGCTCAAAGGTCATTTTAGGGATGGTA	GATTTTCTG <mark>G</mark> TTAGCCTGTTAAGATCCTGGGAG
257	TGTGCTCAAAG <mark>T</mark> TCATTT <mark>G</mark> G <mark>GAGGTGGT</mark> AG	G <mark>CC</mark> TTTCTGCTT <mark>GATT</mark> TGTTAAGATCCTGGGAG
246	TGTGCTCAAAGGTCATTTT <mark>G</mark> GGG <mark>G</mark> GGTGGCAG	GATTTTCTGCTT <mark>GA</mark> CCTGTTAAGATCC <mark>CA</mark> GGAG
251	TGTGCTCAAAGGTCATTTT <mark>G</mark> GAGGTGGCAG	GATTTTCTGCTT <mark>GA</mark> CCTGTTAAGATCCTGGGAG
304	GCGCTCAAAGGTCATTCTGGGGGGGTGGCCA	GATTTTCTGCTT <mark>GA</mark> CCTGTTAAGATCCT <mark>GGGAG</mark>
259	CGTT-CCCAAGTTCATTTGGGAGGTGGCAG	GATTTTCTGCTTAG <mark>GT</mark> TG <mark>ATAAGATCC</mark> A <mark>G</mark> CTT <mark>G</mark>
258	TATGCTCCAAGTTCATCTGGGAGGTGGCAG	GATTTTCTGCTTAGCCTG <mark>ATAAGATCCTG</mark> CAT <mark>G</mark>
285	TGTGCTCAAAGGTCATTTTAGGGAGGTGGCAG	GATTTTCTGCTTAGCCTGTTAAGATCCTGGGAG

Ptr_FAM151A_prom Cfa_FAM151A_prom Ssc_FAM151A_prom Bta_FAM151A_prom Ocu_FAM151A_prom MmusFAM151A_prom Rno_FAM151A_prom Consensus MmulFAM151A_prom Hsa_FAM151A_prom Ptr_FAM151A_prom Cfa_FAM151A_prom Ssc_FAM151A_prom Bta FAM151A prom Ocu_FAM151A_prom MmusFAM151A_prom Rno_FAM151A_prom Consensus MmulFAM151A_prom Hsa_FAM151A_prom Ptr_FAM151A_prom Cfa_FAM151A_prom Ssc_FAM151A_prom Bta_FAM151A_prom Ocu_FAM151A_prom MmusFAM151A_prom Rno_FAM151A_prom Consensus MmulFAM151A_prom Hsa_FAM151A_prom Ptr_FAM151A_prom Cfa FAM151A prom Ssc_FAM151A_prom Bta_FAM151A_prom Ocu_FAM151A_prom MmusFAM151A_prom Rno_FAM151A_prom Consensus MmulFAM151A_prom Hsa_FAM151A_prom Ptr_FAM151A_prom Cfa_FAM151A_prom Ssc_FAM151A_prom Bta FAM151A prom Ocu_FAM151A_prom MmusFAM151A_prom

Rno_FAM151A_prom

Consensus

MmulFAM151A_prom	348	GGTCTGCGGAAAGAGGAGTGGGGGTGGGGGAGGGGGGGGG
Hsa_FAM151A_prom	349	GGTGTGTGGGGAAGAGGATTTGGGGGCGGGGAGGGGGGGG
Ptr_FAM151A_prom	349	GETET GEE CANGAGEAT TE GEGE CEGEGAGE CAGEAGEGECT TE ACGE TATOT CCACAG-GEGA
Cfa_FAM151A_prom	320	GETETGEATAGAAGAGEAGEETG-GEGAAGEGGEGAGEAGEAGECTEAEAAGEAAGEATATOTCTECTETTEAC
Ssc_FAM151A_prom	311	ACACACCECAAGACCEA-CCCCCCCCAACCTCCCCCCCCCCCCCCCCCC
Bta_FAM151A_prom	314	AGAGAGAGGAGGAGGAGCATAGGAAGGTAGGCGGGGGCCTACAAAGGOTGTOTTTGGGAC
Ocu_FAM151A_prom	367	CCCCCCCCCACGCCACCCCCCACCACCACCCCCCCCCC
MmusFAM151A_prom	321	GATEG-GAAGAEGAEGECTEGEAECAEGECAGECTTTCTGAGETCTCTCCACCCAGECAETEGEAA
Rno_FAM151A_prom	321	GETEAGEGAAAATGAGAAGCTAGGAGGAGGGCAAGGGTTTTCTGAAGCTCTCTGCACGCAAGCCAGGCAA
Consensus	350	GGTGTGGGAAAGAGGAGTGGGGAGGGGGGGGGGGGGGG
MmulFAM151A_prom	413	TA <mark>TTACAG</mark> GC <mark>CTG</mark> CA <mark>GAG</mark> TG <mark>GACCAGAC</mark> CT <mark>GGTGGAGAATTAGGTGCTGCTG</mark> GG
MmulFAM151A_prom Hsa_FAM151A_prom	413 413	TATTACACGCCTCCACACTCCACACACCTCCTCCACAATTACCTCCTCC
MmulFAM151A_prom Hsa_FAM151A_prom Ptr_FAM151A_prom	413 413 413	TATTACACGCCTCCAGACTCGACCAGACCTGGTGGAGAATTAGGTGCTGCTCGG TATTACACGCCTCCAGACCACCACCCCCCCGTGGAGAATTAGGTGCTGCTCGC TATTACACGCCTCCAGAACACCACCCCCCCCCGTGGAGAATTAGGTGCTGCTCGCC
MmulFAM151A_prom Hsa_FAM151A_prom Ptr_FAM151A_prom Cfa_FAM151A_prom	413 413 413 384	TATTACAGGGCTGCAGAGIGGACCAGACCTGGTGGAGAATTAGGTGCTGCTGGG TATTACACGGCTCCAGAGCAGACCACCCCGGTGGAGAATTAGGTGCTGCTCGG TATTACACGGCTCCAGAACAGACCACCCCTGGTGGAGAATTAGGTGCTGCTCGG GCTCCTAGCGTGCAGGAGCCAGAGTGCCTTGGCGGAGAACTCGGATACTAGCAGGGGCCCCTG GCTCCTAGCCTGCAGGAGGCAGAGTGCCTTGCGGGGAGAACTCGGATAGCCAGGGGCCCCTG
MmulFAM151A_prom Hsa_FAM151A_prom Ptr_FAM151A_prom Cfa_FAM151A_prom Ssc_FAM151A_prom	413 413 413 384 368	TATTACACGCCTCCACACICGACCACACCTCGCTGCACAATTACGTGCTGCTCGC TATTACACGCCTCCACACCACCACCCCCCCCCC
MmulFAM151A_prom Hsa_FAM151A_prom Ptr_FAM151A_prom Cfa_FAM151A_prom Ssc_FAM151A_prom Bta_FAM151A_prom	413 413 413 384 368 372	TATTACACGCCTCCAGACTCGACACACCACGCCCCGCTGGAGAATTAGGTGCTGCTCGG TATTACACGCCTCCAGAGACACACCACCCCCGCTGGAGAATTAGGTGCTGCTCGG TATTACACGCCTCCAGAACAGACCACCCCCGCTGGAGAATTAGGTGCTGCTCGG TATTACACGCCTCCAGAACAGACCACCCCCGCTGGAGAATTAGGTGCTGCTCGG GCTCCTACGCCCCCAGAACAGAGCCAGCCCTGGTGGAGAACTCGGATGCTACCAGGGGCTCCTG- CATCCACGCCCCACAGGAGCCAGAGTGCCTCCAA-GACCATTGGGTGCTGCTGCGG ATTCCACGCCCCACAGAGCACGCCTGACTCCAA-GACTTCGGTGCTGCTGCGG
MmulFAM151A_prom Hsa_FAM151A_prom Ptr_FAM151A_prom Cfa_FAM151A_prom Ssc_FAM151A_prom Bta_FAM151A_prom Ocu_FAM151A_prom	413 413 384 368 372 432	TATTACACGCCTCCACACTCGACACACCTCGCTCGACAATTACGTCCTCCCCCCCC
MmulFAM151A_prom Hsa_FAM151A_prom Ptr_FAM151A_prom Cfa_FAM151A_prom Ssc_FAM151A_prom Bta_FAM151A_prom Ocu_FAM151A_prom MmusFAM151A_prom	413 413 384 368 372 432 385	TATTACACGCCTCCACACGACCACACACCTCCTCCCACACATTACCTCCTCCCCCCCC
MmulFAM151A_prom Hsa_FAM151A_prom Ptr_FAM151A_prom Cfa_FAM151A_prom Ssc_FAM151A_prom Bta_FAM151A_prom Ocu_FAM151A_prom MmusFAM151A_prom Rno_FAM151A_prom	413 413 384 368 372 432 385 386	TATTACAGGGCTGCAGAGTGGACCAGACCTGCTGGAGAATTAGGTGCTGCTGGG TATTACAGGGCTCCAGAGCAGCACCAGCCCCGCTGGAGAATTAGGTGCTGCTGGG TATTACAGGCCTGCAGAACAGACCAGGCCCCGCTGGAGAATTAGGTGCTGCTGGGG TATTACAGGCCTGCAGAACAGACCAGCCCCGCTGGAGAATTAGGTGCTGCTGGGG GCTCCTACGCAGGAGCCAGAGCCCAGGCCCTGGTGGAGAATTAGGTGCTGCTGGGG GCTCCTACCCGCGAGAGCCAGAGCCCCCGCTGGCGAGAACTCGGATGCTACCAGGGGCCCCTG- CATCCACGCCCCACAGGCCAGAGCCCTGCACACTCCAA-GACCATTCGCTGCTGCTGCG ATTCCACGCCCCACAGCGCGCTGCCAGGCA-AAGAATTAGGTGCTGCTGCT -TTGCACGCCGCTGCAGGGCTGTCCTGCCAGGGA-AAGAATTAGGTGCTGCTGCT -TTGCACGCCGCTCCATCCCCCACCCCATCCCACCTGCAGCCACACGGGCTCTGGG GTGCCCAGACCTGAGTTCATCCCACCTGCAGCCACACAGGGCTCTGGG GTGCGCCAGACCTGAGTT

Appendix E: FAM151A 3' UTR Multiple Sequence Alignment

Pab_FAM151A_3UTR1GCACCCAGGGGTGGTGGGCCAGCGGACGCCAGCGGAGGCAGGAGGGCAGGAAGAA		
Mmu_FAM151A_3UTR1GCACCCCGGGGGTGGTGGCCCAGCGGCCTCCAGGGGGGGG	Pab_FAM151A_3UTR	1 GCACCCAGGGGTGGTGGGCCAGCGGACCTCAGGGCAGGG
Mne_FAM151A_3UTR1GCACCCCGGGGTGGTGGCCCAGCGGCCTCCAGCGGCGCGGAGGCTTCCCACGGGGAGGCAGGAAGAAHsa_FAM151A_3UTR1GCACCCAGGGGTGGTGGGCCAGCGGACTCCAGGGCGGAGGCTTCCCACGGGGAGGCAGGAAGAATfr_FAM151A_3UTR1GCACCCAGGGGTGGTGGGCCAGCGGACTCCAGGGCGGAGGCTTCCCACGGGGAGGCAGGAAGAACan_FAM151A_3UTR1GCACCCAGCGAGTGGTGGGCCAGCGACTCCAGGGCGGAGGCTTCCCACGGGGAGGCAGGAAGAAConsensus1GCACCCAGGGTGGTGGGCCAGCGACTCCAGGGCGGAGGCTTCCCACGGGGAGGCAGGAAGAAPab_FAM151A_3UTR65ATAAAGGCCTTTGCCTTCTCCAMmu_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCAMne_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCAHsa_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCAHsa_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCAHsa_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCACan_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCAPte_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCACan_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCACan_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCACan_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCACan_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCACan_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCACan_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCACan_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCACan_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCACan_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCACan_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCACan_FAM151A_3UTR65ATAAAGGCCTTGGCTTCCCA	Mmu_FAM151A_3UTR	1 GCACCCCGGGGTGGTGGCCCAGCGGCCCCAGGGCGGAGGCTTCCCACGGGGAGGCAGGAAGAA Hairpin loop
Hsa_FAM151A_3UTR1GCACCCAGGGGTGGTGGGCGGGCCAGCGGACGCGGAGGCGGGGGGGG	Mne_FAM151A_3UTR	1 GCACCCCGGGGTGGTGGCCCAGCGGCCTCCAGAGCGGAGGCTTCCCACGGGGAGGCAGGAAGAA Interior loop
Tfr_FAM151A_3UTR1GCACCCAGGGGTGGTGGGGCCAGCGGACTCCAGGGGCGGAGGCTCCCACGGGGAGGCAGGAGAAAAAAAA	Hsa_FAM151A_3UTR	1 GCACCCAGGGGTGGTGGGCCAGCGGACCTCAGGGCGGAGGCTTCCCACGGGGAGGCAGGAAGAA
Pte_FAM151A_3UTR1GCACCCAGGAGTGGTGGGGCCAGCGGACTCCAGGGCAGGAGGCAGGAGGCAGGAGGAAGAACan_FAM151A_3UTR1GCACCCAGGAGTGGTGGGGCCAGCAGCAGCAGCAGCAGGAGGCCAGGAGGCAGGAAGAA	Tfr_FAM151A_3UTR	1 GCACCCAGGGGTGGTGGGCCAGCGGACTTCCAGGGCGGAGGCTTCCCACGGGGAGGCAGGAAGAA
Can_FAM151A_3UTR1GCACCCAGGAGTGGTGGGGCCAGCAGCAGCACCACGGGGGGGG	Pte_FAM151A_3UTR	1 GCACCCAGGAGTGGTGGGCCAGCGGACTCCAGGGCAGAGGGCTTCCCACGGGGAGGCAGGAAGAA
Consensus1GCACCCAGGGTGGTGGGGGCCAGCGGACCCCAGGGGCGGGGGGGG	Can_FAM151A_3UTR	1 GCACCCAGGAGTGGTGGGCCAGCAGACTCCAGGGCGGAGGCTTCCCACGGGGAGGCAGGAAGAA
Pab_FAM151A_3UTR65ATAAAGGTCTTTGCCTTTGCCAMmu_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCAMne_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCAHsa_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCAfr_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCAPte_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCACan_FAM151A_3UTR65ATAAAGGCCTTTGGCTTTCTCCAConsensus65ATAAAGGCCTTTGGCTTTCTCCA	Consensus	1 GCACCCAGGGGTGGTGGGCCAGCGGACTCCAGGGCGGAGGCTTCCCACGGGGAGGCAGGAAGAA
	Pab_FAM151A_3UTR Mmu_FAM151A_3UTR Mne_FAM151A_3UTR Hsa_FAM151A_3UTR Tfr_FAM151A_3UTR Pte_FAM151A_3UTR Can_FAM151A_3UTR Consensus	65ATAAAGGTCTTGGCTTTCTCCA65ATAAAGGCCTTTGGCTTTCTCCA65ATAAAGGTCTTTGGCTTTCTCCA65ATAAAGGCCTTTGGCTTTCTCCA65ATAAAGGCCTTTGGCTTTCTCCA65ATAAAGGCCTTTGGCTTTCTCCA65ATAAAGGCCTTTGGCTTTCTCCA65ATAAAGGCCTTTGGCTTTCTCCA65ATAAAGGCCTTTGGCTTTCTCCA65ATAAAGGCCTTTGGCTTTCTCCA