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Background
Spatial transcriptomics (ST) is a highly promising new technology for
measuring gene expression across a tissue section that captures spatial
heterogeneity of the whole transcriptome. The technology captures two
dimensional gene expression profile from tissue sections. Furthermore,
parallel tissue slices can be combined to create a three dimensional
gene expression map. However, data from current experimental
technologies is significantly zero-inflated due to low capture efficiency,
necessitating a means of data reconstruction.

Methods
Let T ∈ Rnp×n1×...×nN

+ be the observed gene expression tensor, where np
denotes the number of genes, and n1, ..., nN represent the size of the
spatial dimensions. We approximate T with T̂ where T̂ is represented
in the Canonical Polyadic Decomposition (CPD) form, so
T̂ =

∑r
i=1⊗N

i=1[Âp]:,i .
Now, we let the following be our objective function, similar to [1]:

min
Âi ,i∈{x1,...,xn,p}

1

2
||M⊛ (T − T̂ )||2F +

λ

2
vec(T̂ )TL(x1, ..., xn, p)vec(T̂ )

where M is a binary mask tensor of the observed values and
L(x1, ..., xn, p) is the graph Laplacian of the Cartesian product of Gx1,
.., GxN, and Gp, where Gxi is a spatial chain graph of xi , and Gp is a
protein-protein interaction network. To minimize our objective function
we utilize a multiplicative update rule (omitted here for brevity).

Data
We test the method on three 3D gene expression datasets. The first
measures gene expression in the developing human heart at 6.5 PCW
(DHH). [2] The dataset was created by mapping 9 tissue slices
sequenced using ST into one tissue atlas. The second dataset is an
expression atlas of the adult mouse brain (AMB). [3] This dataset was
similarly prepared through ST sequencing of parallel 2-dimensional
sequences, assembled to form a three-dimensional dataset. The third is
an atlas of developmental genes in a stage 5/6 Drosophila embryo
(DME). [4] Unlike this other two datasets, this dataset was obtained
through fluorescent antisense RNA imaging. The three datasets are
visualized below, colored based on expression of a sample spatially
variable genes.

Additionally, the number of genes obtained in every dataset can be
found in the table below:

Dataset Method np
DHH Stacked ST 13850
AMB Stacked ST 14035
DME mRNA Imaging 84

Pipeline
Our method takes 3D data as a table of genes by spots (continuous in
3D space), converts it to a discrete tensor representation, imputes this
tensor, and then interpolates it back into the continuous spot data.

Binning
Name Translation

Filtering

Imputation Algorithm 
Input Tensors

1.1x1.2  15  1  0     5
0.9x2.1   0  2  0     6

...
5.4x9.1  30  2  0     0

          A  B  C  …  Z
         Gene Names

Sp
ot
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rd
s

1.4x3.6   9  3  1     5

1x1   15       0        5
0x2   27       0        6

...
5x9   30       0       10

     HBB FAM151A  …  TP53
         Gene Names

Sp
ot
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oo

rd
s

1x3    9       3        5BioGRID 
PPI

Conversion to 
MATLAB Tensor

Conversion to 
MATLAB Tensor

FIST-Python FIST-MATLAB

Imputed Tensor

1.1x1.2  15 1.2      5
0.9x2.1  11 2.1      6

...
5.4x9.1  30 4.6    5.5

          A   B   …  Z
         Gene Names
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1.4x3.6   9   3      5

Gene Names
Original Coordinates

Multilinear 
Interpolation

Results
We compare our model (FIST-GT) to a spatial nearest-neighbor model
(SNN) using 5-fold cross validation. Here, we plot the cumulative
distribution function (CDF) of absolute errors for the two methods, and
see that the error CDF of FIST-GT is generally less than the error CDF
of SNN.
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Figure: Cumulative absolute error distributions for both models on all datasets.

A one-sided paired Wilcoxon signed-rank test on the error distributions
of the two methods produced the following:

Dataset Statistic p
DHH 6.4 · 1011 < 0.001
AMB 4.8 · 1013 < 0.001
DME 1.6 · 109 0.79

Results (cont.)
Additionally, we measure performance using the following three metrics:

Mean absolute error (MAE)= 1
n

∑
i |Ti − T̂i|.

Symmetric mean absolute percentage error

(SMAPE)= 1
n

∑
i
|Ti−T̂i |
|Ti |+|T̂i |

.

Coefficient of determination (R2):

1−
(∑

i(Ti − T̂i)2
) (∑

i(Ti − T )2
)−1
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Figure: Comparison of MAE, SMAPE, and R2 for FIST-GT and SpatialNN on 5-fold
cross validation of three datasets.

From the chart above, we see that FIST-GT clearly outperforms SNN
for almost every metric on nearly every dataset (the exception being
SMAPE on the DME dataset, which is approximately equal for both
methods).

Conclusions and Future Directions
Here we have shown that FIST imputes three-dimensional spatial
expression data from a variety of datasets more accurately than a
spatial nearest-neighbor model. The heterogeneity of the datasets
tested demonstrates that the method is widely applicable. Future work
will measure errors between the original unbinned data and output
interpolated data to ensure the method’s real-world utility.
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